ﻻ يوجد ملخص باللغة العربية
In the semiclassical approximation in which the electric charges of scalar particles are described by Grassmann variables ($Q_i^2=0, Q_iQ_j e 0$), it is possible to re-express the Lienard-Wiechert potentials and electric fields in the radiation gauge as phase space functions, because the difference among retarded, advanced, and symmetric Green functions is of order Q_i^2. By working in the rest-frame instant form of dynamics, the elimination of the electromagnetic degrees of freedom by means of suitable second classs contraints leads to the identification of the Lienard-Wiechert reduced phase space containing only N charged particles with mutual action-at-a-distance vector and scalar potentials. A Darboux canonical basis of the reduced phase space is found. This allows one to re-express the potentials for arbitrary N as a unique effective scalar potential containing the Coulomb potential and the complete Darwin one, whose 1/c^2 component agrees for with the known expression. The effective potential gives the classical analogue of all static and non-static effects of the one-photon exchange Feynman diagram of scalar electrodynamics.
The anomaly cancellation equations for the $U(1)$ gauge group can be written as a cubic equation in $n-1$ integer variables, where $n$ is the number of Weyl fermions carrying the $U(1)$ charge. We solve this Diophantine cubic equation by providing a
Costa et al. [Phys. Rev. Lett. 123, 151601 (2019)] recently gave a general solution to the anomaly equations for $n$ charges in a $U(1)$ gauge theory. `Primitive solutions of chiral fermion charges were parameterised and it was shown how operations p
This paper deals with quantum fluctuations near the classical instanton configuration. Feynman diagrams in the instanton background are used for the calculation of the tunneling amplitude (the instanton density) in the three-loop order for quartic do
The chiral condensate in QCD at zero temperature does not depend on the quark chemical potential (up to one third the nucleon mass), whereas the spectral density of the Dirac operator shows a strong dependence on the chemical potential. The cancellat
We investigate cosmological constraints on phenomenological models with discrete gauge symmetries by discussing the radiation of standard model particles from Aharonov-Bohm strings. Using intersecting D-brane models in Type IIA string theory, we demo