ﻻ يوجد ملخص باللغة العربية
This paper deals with quantum fluctuations near the classical instanton configuration. Feynman diagrams in the instanton background are used for the calculation of the tunneling amplitude (the instanton density) in the three-loop order for quartic double-well potential. The result for the three-loop contribution coincides in six significant figures with one given long ago by J.~Zinn-Justin. Unlike the two-loop contribution where all involved Feynman integrals are rational numbers, in the three-loop case Feynman diagrams can contain irrational contributions.
In this second paper on quantum fluctuations near the classical instanton configurations, see {em Phys. Rev. D bf 92}, 025046 (2015) and arXiv:1501.03993, we focus on another well studied quantum-mechanical problem, the one-dimensional Sine-Gordon po
We compute the partition function and specific heat for a quantum mechanical particle under the influence of a quartic double-well potential non-perturbatively, using the semiclassical method. Near the region of bounded motion in the inverted potenti
We consider the scalar sector of a general renormalizable theory and evaluate the effective potential through three loops analytically. We encounter three-loop vacuum bubble diagrams with up to two masses and six lines, which we solve using different
Considering the coherent nonlinear dynamics in double square well potential we find the example of coexistence of Josephson oscillations with a self-trapping regime. This macroscopic bistability is explained by proving analytically the simultaneous e
We derive a general WKB energy splitting formula in a double-well potential by incorporating both phase loss and anharmonicity effect in the usual WKB approximation. A bare application of the phase loss approach to the usual WKB method gives better r