ﻻ يوجد ملخص باللغة العربية
We consider the calculation of threshold effects due to Kaluza Klein and winding modes in string theory. We show that for a large radius of compactification these effects may be approximated by an effective field theory applicable below the string cut-off scale. Using this formalism we show that the radiative contribution to gauge couplings involving only massive Kaluza Klein and winding modes may be calculated to all orders in perturbation theory and determine the full two loop contribution involving light modes and estimate the magnitude of the higher-order contributions. For the case of the weakly coupled heterotic string we also discuss how an improved calculation can be made incorporating the string theory threshold corrections which avoids the limitations of the effective field theory approach. Using this formalism we determine the implications for gauge coupling unification for one representative model including the effects of two loop corrections above the compactification scale. Finally we discuss the prospects for gauge unification in Type I models with a low string scale and point out potential fine tuning problems in this case.
We present the initial release of ARGES, a toolkit for obtaining renormalisation group equations in perturbation theory. As such, ARGES can handle any perturbatively renormalisable four-dimensional quantum field theory. Notable further features inclu
We discuss the errors introduced by level truncation in the study of boundary renormalisation group flows by the Truncated Conformal Space Approach. We show that the TCSA results can have the qualitative form of a sequence of RG flows between differe
Neutrino mass sum rules are an important class of predictions in flavour models relating the Majorana phases to the neutrino masses. This leads, for instance, to enormous restrictions on the effective mass as probed in experiments on neutrinoless dou
We discuss an approach for accessing bound state properties, like mass and decay width, of a theory within the functional renormalisation group approach. An important cornerstone is the dynamical hadronization technique for resonant interaction chann
The application of the exact renormalisation group to symmetric as well as asymmetric many-fermion systems with a short-range attractive force is studied. Assuming an ansatz for the effective action with effective bosons, describing pairing effects