ﻻ يوجد ملخص باللغة العربية
The size of non-perturbative corrections to high E_T jet production in deep-inelastic scattering is reviewed. Based on predictions from fragmentation models, hadronization corrections for different jet definitions are compared and the model dependence as well as the dependence on model parameters is investigated. To test whether these hadronization corrections can be applied to next-to-leading order (NLO) calculations, jet properties and topologies in different parton cascade models are compared to those in NLO. The size of the uncertainties in estimating the hadronization corrections is compared to the uncertainties of perturbative predictions. It is shown that for the inclusive k_perp ordered jet clustering algorithm the hadronization corrections are smallest and their uncertainties are of the same size as the uncertainties of perturbative NLO predictions.
We present the complete next-to-leading order calculation of isolated prompt photon production in association with a jet in deep-inelastic scattering. The calculation involves, direct, resolved and fragmentation contributions. It is shown that defini
The production of jets in charged current deep inelastic scattering (CC DIS) constitutes a class of observables that can be used to simultaneously test perturbative predictions for the strong and the electroweak sectors of the Standard Model. We comp
A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5<Q^2<80,{rm GeV}^2$ and inelasticities $0.2<y<0.6$ is presented, using data taken with the H1 detector at HERA, corresponding to an
The reaction e + p ---> photon + jet + X is studied in QCD at the next-to-leading order. Previous studies on inclusive distributions showed a good agreement with ZEUS data. To obtain a finer understanding of the dynamics of the reaction, several corr
We propose a new jet algorithm for deep-inelastic scattering (DIS) that accounts for the forward-backward asymmetry in the Breit frame. The Centauro algorithm is longitudinally invariant and can cluster jets with Born kinematics, which enables novel