ﻻ يوجد ملخص باللغة العربية
The production of jets in charged current deep inelastic scattering (CC DIS) constitutes a class of observables that can be used to simultaneously test perturbative predictions for the strong and the electroweak sectors of the Standard Model. We compute both single jet and di-jet production in CC DIS for the first time at next-to-next-to-leading order (NNLO) in the strong coupling. Our computation is fully differential in the jet and lepton kinematics, and we observe a substantial reduction of scale variation uncertainties in the NNLO predictions compared to next-to-leading order (NLO). Our calculation will prove essential for full exploitation of data at a possible future LHeC collider.
The production of jets in charged-current deep-inelastic scattering (CC DIS) probes simultaneously the strong and the electroweak sectors of the Standard Model; its measurement provides important information on the quark flavour structure of the prot
The size of non-perturbative corrections to high E_T jet production in deep-inelastic scattering is reviewed. Based on predictions from fragmentation models, hadronization corrections for different jet definitions are compared and the model dependenc
Charm production in charged current deep inelastic scattering has been measured for the first time in $e^{pm}p$ collisions, using data collected with the ZEUS detector at HERA, corresponding to an integrated luminosity of $358 pb^{-1}$. Results are p
We provide a first calculation of the complete next-to-leading order QCD corrections for heavy flavor contributions to the inclusive structure function $g_1$ in longitudinally polarized deep-inelastic scattering. The results are derived with largely
We report on a recently completed, first calculation of the full next-to-leading order QCD corrections for heavy flavor contributions to the inclusive structure function $g_1$ in longitudinally polarized deep-inelastic scattering. All results are der