ﻻ يوجد ملخص باللغة العربية
We present a simple and flexible method of keeping track of the complex phases and spin quantization axes for half-spin initial- and final-state Weyl spinors in scattering amplitudes of Standard Model high energy physics processes. Both cases of massless and massive spinors are discussed. The method is demonstrated and checked numerically for spin correlations in tau tau-bar production and decay. Its main application will be in the forthcoming work of combining effects due to multiple photon emission (exponentiation) and spin, embodied in the Monte Carlo event generators for production and decay of unstable fermions such as the tau lepton, t-quark and hypothetical new heavy particles.
This paper reviews how a two-state, spin-one-half system transforms under rotations. It then uses that knowledge to explain how momentum-zero, spin-one-half annihilation and creation operators transform under rotations. The paper then explains how a
We study the conditions under which a non-standard Wigner class concerning discrete symmetries may arise for massive spin one-half states. The mass dimension one fermionic states are shown textcolor{red}{to} constitute explicit examples. We also show
We report on a conceptually new test of the equivalence principle performed by measuring the acceleration in Earths gravity field of two isotopes of strontium atoms, namely, the bosonic $^{88}$Sr isotope which has no spin vs the fermionic $^{87}$Sr i
A few years ago we predicted theoretically that in systems with nesting of the Fermi surface the spin-valley half-metal has lower energy than the spin density wave state. In this paper we suggest a possible way to distinguish these phases experimenta
We present a consistent treatment of heavy quarks for jet production in DIS at NLO accuracy. The method is based on the ACOT massive factorization scheme and dipole subtraction method for jets. The last had to be however extended in order to take int