ترغب بنشر مسار تعليمي؟ اضغط هنا

Global Positioning of Spin GPS Scheme for Half-Spin Massive Spinors

145   0   0.0 ( 0 )
 نشر من قبل B. F. L. Ward
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple and flexible method of keeping track of the complex phases and spin quantization axes for half-spin initial- and final-state Weyl spinors in scattering amplitudes of Standard Model high energy physics processes. Both cases of massless and massive spinors are discussed. The method is demonstrated and checked numerically for spin correlations in tau tau-bar production and decay. Its main application will be in the forthcoming work of combining effects due to multiple photon emission (exponentiation) and spin, embodied in the Monte Carlo event generators for production and decay of unstable fermions such as the tau lepton, t-quark and hypothetical new heavy particles.



قيم البحث

اقرأ أيضاً

103 - Kevin Cahill 2021
This paper reviews how a two-state, spin-one-half system transforms under rotations. It then uses that knowledge to explain how momentum-zero, spin-one-half annihilation and creation operators transform under rotations. The paper then explains how a spin-one-half field transforms under rotations. The momentum-zero spinors are found from the way spin-one-half systems transform under rotations and from the Dirac equation. Once the momentum-zero spinors are known, the Dirac equation immediately yields the spinors at finite momentum. The paper then shows that with these spinors, a Dirac field transforms appropriately under charge conjugation, parity, and time reversal. The paper also describes how a Dirac field may be decomposed either into two 4-component Majorana fields or into a 2-component left-handed field and a 2-component right-handed field. Wigner rotations and Weinbergs derivation of the properties of spinors are also discussed.
We study the conditions under which a non-standard Wigner class concerning discrete symmetries may arise for massive spin one-half states. The mass dimension one fermionic states are shown textcolor{red}{to} constitute explicit examples. We also show how to conciliate these states with the current criticism due to the Lee and Wick, and Weinberg formulation.
We report on a conceptually new test of the equivalence principle performed by measuring the acceleration in Earths gravity field of two isotopes of strontium atoms, namely, the bosonic $^{88}$Sr isotope which has no spin vs the fermionic $^{87}$Sr i sotope which has a half-integer spin. The effect of gravity upon the two atomic species has been probed by means of a precision differential measurement of the Bloch frequency for the two atomic matter waves in a vertical optical lattice. We obtain the values $eta = (0.2pm 1.6)times10^{-7}$ for the Eotvos parameter and $k=(0.5pm1.1)times10^{-7}$ for the coupling between nuclear spin and gravity. This is the first reported experimental test of the equivalence principle for bosonic and fermionic particles and opens a new way to the search for the predicted spin-gravity coupling effects.
A few years ago we predicted theoretically that in systems with nesting of the Fermi surface the spin-valley half-metal has lower energy than the spin density wave state. In this paper we suggest a possible way to distinguish these phases experimenta lly. We calculate dynamical spin susceptibility tensor for both states in the framework of the Kubo formalism. Discussed phases have different numbers of the bands: four bands in the spin-valley half-metal and only two bands in the spin density wave. Therefore, their susceptibilities, as functions of frequency, have different number of peaks. Besides, the spin-valley half-metal does not have rotational symmetry, thus, in general the off-diagonal components of susceptibility tensor are non-zero. The spin density wave obeys robust rotational symmetry and off-diagonal components of the susceptibility tensor are zero. These characteristic features can be observed in experiments with inelastic neutron scattering.
We present a consistent treatment of heavy quarks for jet production in DIS at NLO accuracy. The method is based on the ACOT massive factorization scheme and dipole subtraction method for jets. The last had to be however extended in order to take int o account initial state splittings with heavy quarks. We constructed relevant kinematics and dipole splitting functions together with their integrals. We partially implemented the method in a MC program and checked against the known inclusive result for charm structure function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا