ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersymmetry without R-parity : Constraints from Leptonic Phenomenology

112   0   0.0 ( 0 )
 نشر من قبل Otto Kong
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

R-parity conservation is an {it ad hoc} assumption in the most popular version of the supersymmetric standard model. Most studies of models which do allow for R-parity violation have been restricted to various limiting scenarios. The single-VEV parametrization used in this paper provides a workable framework to analyze phenomenology of the most general theory of SUSY without R-parity. We perform a comprehensive study of leptonic phenomenology at tree-level. Experimental constraints on various processes are studied individually and then combined to yield regions of admissible parameter space. In particular, we show that large R-parity violating bilinear couplings are not ruled out, especially for large $tanbeta$.

قيم البحث

اقرأ أيضاً

We summarized our report on leptonic flavor violating Higgs decay into mu + tau under the scheme of a generic supersymmetric standard model without R parity. With known experimental constraints imposed, important combinations of R-parity violating pa rameters which can give notable branching ratios are listed.
In this letter, we report on lepton flavor violating Higgs decay into mu+tau in the framework of the generic supersymmetric standard model without R parity and list interesting combinations of R-parity violating parameters. We impose other known expe rimental constraints on the parameters of the model and show our results from the R-parity violating parameters. In our analysis, the branching ratio of Higgs to mu+tau can exceed 10^{-5} within admissible parameter space.
This article provides a brief overview of some of the theoretical aspects of R-parity violation (RPV) in the minimal supersymmetric standard model (MSSM) and its extensions. Both spontaneous and explicit RPV models are discussed and some consequences are outlined. In particular, it is emphasized that the simplest supersymmetric theories based on local B-L predict that R-parity must be a broken symmetry, a fact which makes a compelling case for taking R-parity breaking seriously in discussions of supersymmetry phenomenology.
We present a comprehensive update of the bounds on R-Parity violating supersymmetric couplings from lepton-flavour- and lepton-number-violating decay processes. We consider tau and mu decays as well as leptonic and semi-leptonic decays of mesons. We present several new bounds resulting from tau, eta and Kaon decays and correct some results in the literature concerning B-meson decays.
We revisit the limits on $R$-parity violation in the minimal supersymmetric standard model. In particular, we focus on the high-scale supersymmetry scenario in which all the sparticles are in excess of the inflationary scale of approximately $10^{13} $ GeV, and thus no sparticles ever come into thermal equilibrium. In this case the cosmological limits, stemming from the preservation of the baryon asymmetry that have been previously applied for weak scale supersymmetry, are now relaxed. We argue that even when sparticles are never in equilibrium, $R$-parity violation is still constrained via higher dimensional operators by neutrino and nucleon experiments and/or insisting on the preservation of a non-zero $B-L$ asymmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا