ترغب بنشر مسار تعليمي؟ اضغط هنا

Indirect Detection of Dark Matter in km-size Neutrino Telescopes

63   0   0.0 ( 0 )
 نشر من قبل Joakim Edsjo
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrino telescopes of kilometer size are currently being planned. They will be two or three orders of magnitude bigger than presently operating detectors, but they will have a much higher muon energy threshold. We discuss the trade-off between area and energy threshold for indirect detection of neutralino dark matter captured in the Sun and in the Earth and annihilating into high energy neutrinos. We also study the effect of a higher threshold on the complementarity of different searches for supersymmetric dark matter.



قيم البحث

اقرأ أيضاً

We investigate the feasibility of the indirect detection of dark matter in a simple model using the neutrino portal. The model is very economical, with right-handed neutrinos generating neutrino masses through the Type-I seesaw mechanism and simultan eously mediating interactions with dark matter. Given the small neutrino Yukawa couplings expected in a Type-I seesaw, direct detection and accelerator probes of dark matter in this scenario are challenging. However, dark matter can efficiently annihilate to right-handed neutrinos, which then decay via active-sterile mixing through the weak interactions, leading to a variety of indirect astronomical signatures. We derive the existing constraints on this scenario from Planck cosmic microwave background measurements, Fermi dwarf spheroidal galaxies and Galactic Center gamma-rays observations, and Alpha Magnetic Spectrometer - 02 antiprotons observations, and also discuss the future prospects of Fermi and the Cherenkov Telescope Array. Thermal annihilation rates are already being probed for dark matter lighter than about 50 GeV, and this can be extended to dark matter masses of 100 GeV and beyond in the future. This scenario can also provide a dark matter interpretation of the Fermi Galactic Center gamma ray excess, and we confront this interpretation with other indirect constraints. Finally we discuss some of the exciting implications of extensions of the minimal model with large neutrino Yukawa couplings and Higgs portal couplings.
118 - Marco Chianese 2019
Recent analyses of the diffuse TeV-PeV neutrino flux highlight a tension between different Ice-Cube data samples that strongly suggests a two-component scenario rather than a single steep power-law flux. Such a tension is further strengthened once th e latest ANTARES data are also taken into account. Remarkably, both experiments show an excess in the same energy range (40-200 TeV), whose origin could intriguingly be related to dark matter. In this paper, I discuss the combined analysis of IceCube and ANTARES data, highlighting the presence of the low-energy excess. Moreover, I update the results of the angular analysis for potential dark matter signals, previously obtained with the 4-year High-Energy Starting Events data. In particular, I statistically compare the distribution of the arrival directions of 6-year IceCube events belonging to the low-energy excess with the angular distributions expected in case of different dark matter neutrino signals.
We perform a new dark matter hot spot analysis using ten years of public IceCube data. In this analysis we assume dark matter self-annihilates to neutrino pairs and treat the production sites as discrete point sources. For neutrino telescopes these s ites will appear as hot spots in the sky, possibly outshining other standard model neutrino sources. Comparing to galactic center analyses, we show that this approach is a powerful tool and capable of setting the highest neutrino detector limits for dark matter masses between 10 TeV and 100 PeV. This is due to the inclusion of spatial information in addition to the typically used energy deposition in the analysis.
The astrophysics community is considering plans for a variety of gamma-ray telescopes (including ACT and GRIPS) in the energy range 1--100 MeV, which can fill in the so-called MeV gap in current sensitivity. We investigate the utility of such detecto rs for the study of low-mass dark matter annihilation or decay. For annihilating (decaying) dark matter with a mass below about 140 MeV (280 MeV) and couplings to first generation quarks, the final states will be dominated by photons or neutral pions, producing striking signals in gamma-ray telescopes. We determine the sensitivity of future detectors to the kinematically allowed final states. In particular, we find that planned detectors can improve on current sensitivity to this class of models by up to a few orders of magnitude.
We revisit indirect detection possibilities for neutralino dark matter, emphasizing the complementary roles of different approaches. While thermally produced dark matter often requires large astrophysical boost factors to observe antimatter signals, the physically motivated alternative of non-thermal dark matter can naturally provide interesting signals, for example from light wino or Higgsino dark matter. After a brief review of cosmic ray propagation, we discuss signals for positrons, antiprotons, synchrotron radiation and gamma rays from wino annihilation in the galactic halo, and examine their phenomenology. For pure wino dark matter relevant to the LHC, PAMELA and GLAST should report signals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا