ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter Hot Spots and Neutrino Telescopes

238   0   0.0 ( 0 )
 نشر من قبل Stephan Meighen-Berger
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a new dark matter hot spot analysis using ten years of public IceCube data. In this analysis we assume dark matter self-annihilates to neutrino pairs and treat the production sites as discrete point sources. For neutrino telescopes these sites will appear as hot spots in the sky, possibly outshining other standard model neutrino sources. Comparing to galactic center analyses, we show that this approach is a powerful tool and capable of setting the highest neutrino detector limits for dark matter masses between 10 TeV and 100 PeV. This is due to the inclusion of spatial information in addition to the typically used energy deposition in the analysis.

قيم البحث

اقرأ أيضاً

118 - Marco Chianese 2019
Recent analyses of the diffuse TeV-PeV neutrino flux highlight a tension between different Ice-Cube data samples that strongly suggests a two-component scenario rather than a single steep power-law flux. Such a tension is further strengthened once th e latest ANTARES data are also taken into account. Remarkably, both experiments show an excess in the same energy range (40-200 TeV), whose origin could intriguingly be related to dark matter. In this paper, I discuss the combined analysis of IceCube and ANTARES data, highlighting the presence of the low-energy excess. Moreover, I update the results of the angular analysis for potential dark matter signals, previously obtained with the 4-year High-Energy Starting Events data. In particular, I statistically compare the distribution of the arrival directions of 6-year IceCube events belonging to the low-energy excess with the angular distributions expected in case of different dark matter neutrino signals.
In the next decades, ultra-high-energy neutrinos in the EeV energy range will be potentially detected by next-generation neutrino telescopes. Although their primary goals are to observe cosmogenic neutrinos and to gain insight into extreme astrophysi cal environments, they can also indirectly probe the nature of dark matter. In this paper, we study the projected sensitivity of up-coming neutrino radio telescopes, such as RNO-G, GRAND and IceCube-gen2 radio array, to decaying dark matter scenarios. We investigate different dark matter decaying channels and masses, from $10^7$ to $10^{15}$ GeV. By assuming the observation of cosmogenic or newborn pulsar neutrinos, we forecast conservative constraints on the lifetime of heavy dark matter particles. We find that these limits are competitive with and highly complementary to previous multi-messenger analyses.
128 - V. Barger , Y. Gao , W.-Y. Keung 2009
We describe a characteristic signature of dark matter (DM) annihilation or decay into gamma-rays. We show that if the total angular momentum of the initial DM particle(s) vanishes, and helicity suppression operates to prevent annihilation/decay into light fermion pairs, then the amplitude for the dominant 3-body final state f^+f^-gamma has a unique form dictated by gauge invariance. This amplitude and the corresponding energy spectra hold for annihilation of DM Majorana fermions or self-conjugate scalars, and for decay of DM scalars, thus encompassing a variety of possibilities. Within this scenario, we analyze Fermi LAT, PAMELA and HESS data, and predict a hint in future Fermi gamma-ray data that portends a striking signal at atmospheric Cherenkov telescopes (ACTs).
We study neutrino oscillations in a medium of dark matter which generalizes the standard matter effect. A general formula is derived to describe the effect of various mediums and their mediators to neutrinos. Neutrinos and anti-neutrinos receive oppo site contributions from asymmetric distribution of (dark) matter and anti-matter, and thus it could appear in precision measurement of neutrino or anti-neutrino oscillations. Furthermore, the standard neutrino oscillation can occur from the symmetric dark matter effect even for massless neutrinos.
The hypothesis of two different components in the high-energy neutrino flux observed with IceCube has been proposed to solve the tension among different data-sets and to account for an excess of neutrino events at 100 TeV. In addition to a standard a strophysical power-law component, the second component might be explained by a different class of astrophysical sources, or more intriguingly, might originate from decaying or annihilating dark matter. These two scenarios can be distinguished thanks to the different expected angular distributions of neutrino events. Neutrino signals from dark matter are indeed expected to have some correlation with the extended galactic dark matter halo. In this paper, we perform angular power spectrum analyses of simulated neutrino sky maps to investigate the two-component hypothesis with a contribution from dark matter. We provide current constraints and expected sensitivity to dark matter parameters for future neutrino telescopes such as IceCube-Gen2 and KM3NeT. The latter is found to be more sensitive than IceCube-Gen2 to look for a dark matter signal at low energies towards the galactic center. Finally, we show that after 10 years of data-taking, they will firmly probe the current best-fit scenario for decaying dark matter by exploiting the angular information only.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا