ترغب بنشر مسار تعليمي؟ اضغط هنا

Observing Doubly Charged Higgs Bosons in Photon-Photon Collisions

32   0   0.0 ( 0 )
 نشر من قبل Debajyoti Choudhury
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the possibility of observing doubly charged Higgs bosons in $gamma gamma$ collisions. We find that one can increase the range of observability close to the kinematic limit by a judicious choice of the polarisations of the initial $e^-/ e^+$ beams as well as the initial laser beam photons which are made to back-scatter from the former. We also note that, in a large region of parameter space, the generally used lepton number violating decay mode is dominated by the decay into a singly charged Higgs and a real or virtual $W$-boson, giving rise to a large number of fermions in the final state. This can qualitatively alter the strategy for discovering doubly-charged scalars.

قيم البحث

اقرأ أيضاً

100 - J.F. Gunion 1996
Doubly-charged Higgs bosons ($Delta^{--}/Delta^{++}$) appear in several extensions to the Standard Model and can be relatively light. We review the theoretical motivation for these states and present a study of the discovery reach in future runs of t he Fermilab Tevatron for pair-produced doubly-charged Higgs bosons decaying to like-sign lepton pairs. We also comment on the discovery potential at other future colliders.
We calculate the cross sections for the production of Higgs particles in association with a photon in $e^+ e^-$ collisions, $e^+ e^- to gamma+$Higgs, allowing for the longitudinal polarization of the initial electron and positron beams. We consider t he associated production of both the Standard Model Higgs boson, and the neutral CP-even and CP-odd Higgs particles of its minimal supersymmetric extension. Complete and compact analytical expressions are given, and the size of the cross sections is illustrated for energies which will be reached at future $e^+ e^-$ colliders.
We discuss the pair production of charginos in collisions of polarized photons $gammagamma to tilde{chi}_i^+ tilde{chi}_i^-$, ($i=1,2$) and the subsequent leptonic decay of the lighter chargino $tilde{chi}_1^+ to tilde{chi}_1^0 e^+ u_e$ including th e complete spin correlations. Analytical formulae are given for the polarization and the spin-spin correlations of the charginos. Since the production is a pure QED process the decay dynamics can be studied separately. For high energy photons from Compton backscattering of polarized laser pulses off polarized electron beams numerical results are presented for the cross section, the angular distribution and the forward-backward asymmetry of the decay positron. Finally we study the dependence on the gaugino mass parameter $M_1$ and on the sneutrino mass for a gaugino-like MSSM scenario.
We investigate the prospect of an alternative laboratory-based search for the coupling of axions and axion-like particles to photons. Here, the collision of two laser beams resonantly produces axions, and a signal photon is detected after magnetic re conversion, as in light-shining-through-walls (LSW) experiments. Conventional searches, such as LSW or anomalous birefrigence measurements, are most sensitive to axion masses for which substantial coherence can be achieved; this is usually well below optical energies. We find that using currently available high-power laser facilities, the bounds that can be achieved by our approach outperform traditional LSW at axion masses between $0.5-6$ eV, set by the optical laser frequencies and collision angle. These bounds can be further improved through coherent scattering off laser substructures, probing axion-photon couplings down to $g_{agammagamma}sim 10^{-8} {text{GeV}^{-1}}$, comparable with existing CAST bounds. Assuming a day long measurement per angular step, the QCD axion band can be reached.
The high-energy behaviour of the total cross section for highly virtual photons, as predicted by the BFKL equation at next-to-leading order (NLO) in QCD, is presented. The NLO BFKL predictions, improved by the BLM optimal scale setting, are in excell ent agreement with recent OPAL and L3 data at CERN LEP2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا