ترغب بنشر مسار تعليمي؟ اضغط هنا

Associated Production of Higgs Bosons and a Photon in High-Energy $e^+ e^-$ Collisions

96   0   0.0 ( 0 )
 نشر من قبل A. Djouadi
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the cross sections for the production of Higgs particles in association with a photon in $e^+ e^-$ collisions, $e^+ e^- to gamma+$Higgs, allowing for the longitudinal polarization of the initial electron and positron beams. We consider the associated production of both the Standard Model Higgs boson, and the neutral CP-even and CP-odd Higgs particles of its minimal supersymmetric extension. Complete and compact analytical expressions are given, and the size of the cross sections is illustrated for energies which will be reached at future $e^+ e^-$ colliders.

قيم البحث

اقرأ أيضاً

We present the first complete 1-loop diagrammatic calculation of the cross sections for the neutral Higgs production processes $e^+e^-ra Z^0h^0$ and $e^+e^-ra A^0h^0$ in the minimal supersymmetric standard model. We compare the results from the diagr ammatic calculation with the corresponding ones of the simpler and compact effective potential approximation and discuss the typical size of the differences.
We examine the sensitivity of the angular distribution of the Higgs boson in the process of $e^+e^-to Z H$ and the total cross section in the minimal noncommutative standard model (mNCSM) framework to set lower limit on the noncommutative charactrist ic scale ($Lambda$). Contrary to the standard model case, in this process the Higgs boson tends to be emitted anisotropically in the transverse plane. Based on this fact, the profile likelihood ratio is used to set lower limit on $Lambda$. The lower limit is presented as a function of the integrated luminosity. We show that at the center-of-mass energy of 1.5 TeV and with 500 fb$^{-1}$ of data, the noncommutative characteristic energy scale $Lambda$ can be excluded up to 1.2 TeV.
For the search for additional Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM) as well as for future precision analyses in the Higgs sector a precise knowledge of their production properties is mandatory. We review the evaluation of t he cross sections for the neutral Higgs boson production in association with a photon at future $e^+e^-$ colliders in the MSSM with complex parameters (cMSSM). The evaluation is based on a full one-loop calculation of the production mechanism $e^+e^- to h_i gamma$ ($i = 1,2,3$). The dependence of the lightest Higgs-boson production cross sections on the relevant cMSSM parameters is analyzed numerically. We find relatively small numerical depedences of the production cross sections on the underlying parameters.
% insert abstract here We study the production of the Higgs bosons predicted in the Minimal Supersymmetric extension of the Standard Model $(h^0, H^0, A^0, H^pm)$, with the reactions $e^{+}e^{-}to bbar b h^0 (H^0, A^0)$, and $e^+e^-to tau^-bar u_tau H^+, tau^+ u_tau H^-$, using the helicity formalism. We evaluate cross section of $h^0, H^0, A^0$ and $H^pm$ in the limit when $tanbeta$ is large. The numerical computation is done considering two stages of a possible Next Linear $e^{+}e^{-}$ Collider: the first with $sqrt{s}=500$ $GeV$ and design luminosity 50 $fb^{-1}$, and the second with $sqrt{s}=1$ $TeV$ and luminosity 100-200 $fb^{-1}$.
If the $X(3872)$ is a weakly bound charm-meson molecule, it can be produced in $e^+ e^-$ annihilation by the creation of $D^{*0} bar D^{*0}$ from a virtual photon followed by the rescattering of the P-wave charm-meson pair into the $X$ and a photon. A triangle singularity produces a narrow peak in the cross section for $e^+ e^- to X gamma$ 2.2 MeV above the $D^{*0} bar{D}^{*0}$ threshold. We predict the normalized cross section in the region of the peak. We show that the absorptive contribution to the cross section for $e^+ e^- to D^{*0} bar D^{*0} to X gamma$, which was calculated previously by Dubynskiy and Voloshin, does not give a good approximation to the peak from the triangle singularity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا