ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino Mass and Missing Momentum Higgs Boson Signals

91   0   0.0 ( 0 )
 نشر من قبل Miguel A. Garcia Jareno
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the simplest scheme for neutrino masses invoking a triplet of Higgs scalars there are two CP-even neutral Higgs bosons $H_i$ (i=1,2) and one massive pseudoscalar $A$. For some choices of parameters, the lightest $H_1$ may be lighter than the Standard Model Higgs boson. If the smallness of neutrino mass is due to the small value of the triplet expectation value, as expected in a seesaw scheme, the Higgs bosons may decay dominantly to the invisible neutrino channel. We derive limits on Higgs masses and couplings that follow from LEP I precision measurements of the invisible Z width.

قيم البحث

اقرأ أيضاً

111 - Bogdan A. Dobrescu 2015
Color-singlet gauge bosons with renormalizable couplings to quarks but not to leptons must interact with additional fermions (anomalons) required to cancel the gauge anomalies. Analyzing the decays of such leptophobic bosons into anomalons, I show th at they produce final states involving leptons at the LHC. Resonant production of a flavor-universal leptophobic $Z$ boson leads to cascade decays via anomalons, whose signatures include a leptonically decaying $Z$, missing energy and several jets. A $Z$ boson that couples to the right-handed quarks of the first and second generations undergoes cascade decays that violate lepton universality and include signals with two leptons and jets, or with a Higgs boson, a lepton, a $W$ and missing energy.
109 - M.G.Albrow 2000
If the Higgs is produced with a large enough cross section in the {em exclusive} reaction $p + bar{p} to p + H + bar{p}$ it will give rise to a peak at $M_H$ in the {em missing mass} ($MM$) spectrum, calculated from the 4-momenta of the beam particle s and the outgoing $p$ and $bar{p}$. The resolution in $MM$ can be approximately 250 MeV, independent of $M_H$ from 100 GeV to 200 GeV. This high resolution makes a search feasible over nearly this full mass range at the Tevatron with 15 fb$^{-1}$ as hoped for in Run II.
95 - S. Nandi 2010
In this talk, I present a new mechanism for the generation of neutrino masses via dimension 7 operators: llHH(H*H)/M^3. This leads to new formula for the light neutrino masses, m_ u~v^4/M^3. This is distinct from the usual see-saw formulae: m_ u~v^2/ M. The scale of new physics can naturally be at the TeV scale. Microscopic theory that generated d=7 operator has an isospin 3/2 Higgs multiplet Phi, which contains a triply charged Higgs boson with mass around ~TeV or less. These particles can be produced at the LHC (and possibly at the Tevatron) with distinctive multi-W and multi-lepton final states. For some choice of the parameter space, these particles can also be long-lived with the possibility of displaced vertices, or even escaping the detector. Their leptonic decay modes carry information about the nature of the neutrino mass hierarchy.
54 - Ernest Ma , Jose Wudka 2012
One-loop radiative Majorana neutrino masses through the exchange of scalars have been considered for many years. We show for the first time how such a one-loop mass is also possible through the exchange of vector gauge bosons. It is based on a simple variation of a recently proposed $SU(2)_N$ extension of the standard model, where a vector boson is a candidate for the dark matter of the Universe.
Current analyses of the LHC data put stringent bounds on strongly interacting supersymmetric particles, restricting the masses of squarks and gluinos to be above the TeV scale. However, the supersymmetric electroweak sector is poorly constrained. In this article we explore the consistency of possible LHC missing energy signals with the broader phenomenological structure of the electroweak sector in low energy supersymmetry models. As an example, we focus on the newly developed Recursive Jigsaw Reconstruction analysis by ATLAS, which reports interesting event excesses in channels containing di-lepton and tri-lepton final states plus missing energy. We show that it is not difficult to obtain compatibility of these LHC data with the observed dark matter relic density, the bounds from dark matter direct detection experiments, and the measured anomalous magnetic moment of the muon. We provide analytical expressions which can be used to understand the range of gaugino masses, the value of the Higgsino mass parameter, the heavy Higgs spectrum, the ratio of the Higgs vacuum expectation values $tan beta$, and the slepton spectrum obtained in our numerical analysis of these observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا