ترغب بنشر مسار تعليمي؟ اضغط هنا

Borel singularities at small x

169   0   0.0 ( 0 )
 نشر من قبل Michael Sotiropoulos
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

D.I.S. at small Bjorken $x$ is considered within the dipole cascade formalism. The running coupling in impact parameter space is introduced in order to parametrize effects that arise from emission of large size dipoles. This results in a new evolution equation for the dipole cascade. Strong coupling effects are analyzed after transforming the evolution equation in Borel ($b$) space. The Borel singularities of the solution are discussed first for the universal part of the dipole cascade and then for the specific process of D.I.S. at small $x$. In the latter case the leading infrared renormalon is at $b=1/beta_0$ indicating the presence of $1/Q^2$ power corrections for the small-$x$ structure functions.

قيم البحث

اقرأ أيضاً

Starting from the dipole representation of small-$x$ evolution we implement the running of the coupling in a self-consistent way. This results in an evolution equation for the dipole density in Borel $(b)$ space. We show that the Borel image of the d ipole density is analytic in the neighbourhood of $b=0$ and that it is equal to the BFKL solution at $b=0$. We study the Borel singularity structure of the dipole cascade emanating from a virtual photon at small $x$ and find a branch cut on the positive $b$-semiaxis starting at $b=1/ beta_0$. This indicates the presence of $1/Q^2$ power corrections to the small-$x$ structure functions. Finally we present numerical results in the context of D.I.S.
We investigate enhanced EW corrections to inclusive hard processes in the TeV energy region with emphasis on the small-x situation, in which the hard scale Q is significantly smaller than the available energy sqrt{s}= Q/x. We first propose and justif y a general factorization formula in which the (double-log) EW form factor at scale Q^2 is factorized from EW parton distribution functions, which satisfy evolution equations of DGLAP type. We then investigate the small-x behavior of the EW parton distributions including the novel ones for non-vanishing t-channel weak isospin T and we compare it with a BFKL-type approach. In either approach we find that large small-x corrections of order alpha_w log x log Q^2/M^2 (M being the EW symmetry breaking scale) are present only for T=2 and not for T=1. This implies that only transverse WW interactions (coupled to T=2) are affected, while the T=1 components feel just the form factor at scale Q^2.
92 - Yuri V. Kovchegov 2019
We determine the small Bjorken $x$ asymptotics of the quark and gluon orbital angular momentum (OAM) distributions in the proton in the double-logarithmic approximation (DLA), which resums powers of $alpha_s ln^2 (1/x)$ with $alpha_s$ the strong coup ling constant. Starting with the operator definitions for the quark and gluon OAM, we simplify them at small $x$, relating them, respectively, to the polarized dipole amplitudes for the quark and gluon helicities defined in our earlier works. Using the small-$x$ evolution equations derived for these polarized dipole amplitudes earlier we arrive at the following small-$x$ asymptotics of the quark and gluon OAM distributions in the large-$N_c$ limit: begin{align} L_{q + bar{q}} (x, Q^2) = - Delta Sigma (x, Q^2) sim left(frac{1}{x}right)^{frac{4}{sqrt{3}} , sqrt{frac{alpha_s , N_c}{2 pi}} }, L_G (x, Q^2) sim Delta G (x, Q^2) sim left(frac{1}{x}right)^{frac{13}{4 sqrt{3}} , sqrt{frac{alpha_s , N_c}{2 pi}}} . end{align}
We present a general analysis of the orbital angular momentum (OAM) distribution of gluons $L_g(x)$ inside the nucleon with particular emphasis on the small-$x$ region. We derive a novel operator representation of $L_g(x)$ in terms of Wilson lines an d argue that it is approximately proportional to the gluon helicity distribution $L_g(x) approx -2Delta G(x)$ at small-$x$. We also compute longitudinal single spin asymmetry in exclusive diffractive dijet production in lepton-nucleon scattering in the next-to-eikonal approximation and show that the asymmetry is a direct probe of the gluon helicity/OAM distribution as well as the QCD odderon exchange.
74 - Masazumi Honda 2017
In supersymmetric (SUSY) field theory, there exist configurations which formally satisfy SUSY conditions but are not on original path integral contour. We refer to such configurations as complexified supersymmetric solutions (CSS). In this paper we d iscuss that CSS provide important information on large order behavior of weak coupling perturbative series in SUSY field theories. We conjecture that CSS with a bosonic (fermionic) free parameter give poles (zeroes) of Borel transformation of perturbative series whose locations are uniquely determined by actions of the solutions. We demonstrate this for various SUSY observables in 3d $mathcal{N}=2$ SUSY Chern-Simons matter theories on sphere. First we construct infinite number of CSS in general 3d $mathcal{N}=2$ SUSY theory with Lagrangian where adjoint scalar in vector multiplet takes a complex value and matter fields are nontrivial. Then we compare their actions with Borel transformations of perturbative expansions by inverse Chern-Simons levels for the observables and see agreement with our conjecture. It turns out that the CSS explain all the Borel singularities for this case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا