ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Coupling Electroweak Symmetry Breaking

54   0   0.0 ( 0 )
 نشر من قبل Michael E. Peskin
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. We emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. We also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models. [Working group summary report from the Snowmass `96 summer study, to appear in the proceedings.]

قيم البحث

اقرأ أيضاً

113 - T.W.B. Kibble 2015
In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salams group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.
In this summary report of the 2001 Snowmass Electroweak Symmetry Breaking Working Group, the main candidates for theories of electroweak symmetry breaking are surveyed, and the criteria for distinguishing among the different approaches are discussed. The potential for observing electroweak symmetry breaking phenomena at the upgraded Tevatron and the LHC is described. We emphasize the importance of a high-luminosity $e^+e^-$ linear collider for precision measurements to clarify the underlying electroweak symmetry breaking dynamics. Finally, we note the possible roles of the $mu^+mu^-$ collider and VLHC for further elucidating the physics of electroweak symmetry breaking.
We present a model of electroweak symmetry breaking in a warped extra dimension where electroweak symmetry is broken at the UV (or Planck) scale. An underlying conformal symmetry is broken at the IR (or TeV) scale generating masses for the electrowea k gauge bosons without invoking a Higgs mechanism. By the AdS/CFT correspondence the W,Z bosons are identified as composite states of a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking is an emergent phenomenon at the IR scale. The model satisfies electroweak precision tests with reasonable fits to the S and T parameter. In particular the T parameter is sufficiently suppressed since the model naturally admits a custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a novel possibility of unitarizing WW scattering via form factor suppression. Constraints from LEP and the Tevatron as well as discovery opportunities at the LHC are discussed for these composite electroweak gauge bosons.
In this paper we study a new class of supersymmetric models that can explain a 125 GeV Higgs without fine-tuning. These models contain additional `auxiliary Higgs fields with large tree-level quartic interaction terms but no Yukawa couplings. These h ave electroweak-breaking vacuum expectation values, and contribute to the VEVs of the MSSM Higgs fields either through an induced quartic or through an induced tadpole. The quartic interactions for the auxiliary Higgs fields can arise from either D-terms or F-terms. The tadpole mechanism has been previously studied in strongly-coupled models with large D-terms, referred to as `superconformal technicolor. The perturbative models studied here preserve gauge coupling unification in the simplest possible way, namely that all new fields are in complete SU(5) multiplets. The models are consistent with the observed properties of the 125 GeV Higgs-like boson as well as precision electroweak constraints, and predict a rich phenomenology of new Higgs states at the weak scale. The tuning is less than 10% in almost all of the phenomenologically allowed parameter space. If electroweak symmetry is broken by an induced tadpole, the cubic and quartic Higgs self-couplings are significantly smaller than in the standard model.
We review the connection between $m_t$ and the $Zbbar b$ vertex in ETC models and discuss the resulting experimental constraint on models with weak-singlet ETC bosons. We mention several recent efforts to bring ETC models into agreement with this con straint, and explore the most promising one (non-commuting ETC) in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا