ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Tests of Dynamical Electroweak Symmetry Breaking

121   0   0.0 ( 0 )
 نشر من قبل Elizabeth H. Simmons
 تاريخ النشر 1995
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the connection between $m_t$ and the $Zbbar b$ vertex in ETC models and discuss the resulting experimental constraint on models with weak-singlet ETC bosons. We mention several recent efforts to bring ETC models into agreement with this constraint, and explore the most promising one (non-commuting ETC) in detail.



قيم البحث

اقرأ أيضاً

We review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. We emphasize the direct observation of the new interactions through high-energy scatterin g of vector bosons. We also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models. [Working group summary report from the Snowmass `96 summer study, to appear in the proceedings.]
190 - T.W.B. Kibble 2015
In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salams group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.
62 - Bumseok Kyae 2018
We propose a new dynamical relaxation mechanism of the little hierarchy problem, based on a singlet extension of the minimal supersymmetric standard model (MSSM). In this scenario, the small soft mass parameter of an MSSM singlet is responsible for t he electroweak symmetry breaking and the non-zero Higgs vacuum expectation value, whereas the effect of the large soft mass parameter of the Higgs boson, -m_{h_u}^2 is dynamically compensated by a flat direction of the MSSM singlets. The small singlets soft mass and the Z boson mass can be protected, even if the stop mass is heavier than 10 or 20 TeV, since the gravity-mediated supersymmetry breaking effects and the relevant Yukawa couplings are relatively small. A focus point of the singlets soft mass parameter can emerge around the stop mass scale, and so various fine-tuning measures can reduce well below 100. Due to the relatively large gauge-mediated effects, the MSSM superpartners are much heavier than the experimental bounds, and the unwanted flavor changing processes are adequately suppressed.
Existing models of dynamical electroweak symmetry breaking (EWSB) find it very difficult to get a Higgs of mass lighter than $m_t$. Consequently, in light of the LHC discovery of the ~125 GeV Higgs, such models face a significant obstacle. Moreover, with three generations those models have a superheavy cut-off around $10^{17}$ GeV, requiring a significant fine-tuning. To overcome these twin difficulties, we propose a hybrid framework for EWSB, in which the Higgs mechanism is combined with a Nambu-Jona-Lasinio mechanism. The model introduces a strongly coupled doublet of heavy quarks with a mass around 500 GeV, which forms a condensate at a compositeness scale $Lambda$ about a few TeV, and an additional unconstrained scalar doublet which behaves as a fundamental doublet at $Lambda$. This fundamental-like doublet has a vanishing quartic term at $Lambda$ and is, therefore, not the SM doublet, but should rather be viewed as a pseudo-Goldstone boson of the underlying strong dynamics. This setup is matched at the compositeness scale $Lambda$ to a tightly constrained hybrid two Higgs doublet model, where both the composite and unconstrained scalars participate in EWSB. This allows us to get a good candidate for the recently observed 125 GeV scalar which has properties very similar to the Standard Model Higgs. The heavier (mostly composite) CP-even scalar has a mass around 500 GeV, while the pseudoscalar and the charged Higgs particles have masses in the range 200 -300 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا