ﻻ يوجد ملخص باللغة العربية
We apply the $delta$-expansion perturbation scheme to the $lambda phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $delta$-expansion the interaction term is written as $lambda (phi^{2})^{ 1 + delta}$ and $delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $delta$. The results are compared with the usual loop-expansion at finite temperature.
Euclidean strong coupling expansion of the partition function is applied to lattice Yang-Mills theory at finite temperature, i.e. for lattices with a compactified temporal direction. The expansions have a finite radius of convergence and thus are val
The thermodynamics of a scalar field with a quartic interaction is studied within the linear delta expansion (LDE) method. Using the imaginary-time formalism the free energy is evaluated up to second order in the LDE. The method generates nonperturba
In this paper, we investigate operator product expansion for thermal correlation function of the two scalar currents. Due to breakdown of Lorentz invariance at finite temperature, more operators of the same dimension appear in the operator product ex
The nucleon mass shift is calculated using chiral counting arguments and a virial expansion, without and with the $Delta$. At all temperatures, the mass shift and damping rate are dominated by the $Delta$. Our results are compared with the empirical
We demonstrate the applicability of integration-by-parts (IBP) identities in finite-temperature field theory. As a concrete example, we perform 3-loop computations for the thermodynamic pressure of QCD in general covariant gauges, and confirm earlier Feynman-gauge results.