ﻻ يوجد ملخص باللغة العربية
We demonstrate the applicability of integration-by-parts (IBP) identities in finite-temperature field theory. As a concrete example, we perform 3-loop computations for the thermodynamic pressure of QCD in general covariant gauges, and confirm earlier Feynman-gauge results.
Dynamical symmetry breaking in three-dimensional QED with N fermion flavours is considered at finite temperature, in the large $N$ approximation. Using an approximate treatment of the Schwinger-Dyson equation for the fermion self-energy, we find that
We present an efficient method to shorten the analytic integration-by-parts (IBP) reduction coefficients of multi-loop Feynman integrals. For our approach, we develop an improved version of Leinartas multivariate partial fraction algorithm, and provi
We show that the Mellin summation technique (MST) is a well defined and useful tool to compute loop integrals at finite temperature in the imaginary-time formulation of thermal field theory, especially when interested in the infrared limit of such in
We present a new gauge fixing condition for the Weinberg-Salam electro-weak theory at finite temperature and density. After spontaneous symmetry breaking occurs, every unphysical term in the Lagrangian is eliminated with our gauge fixing condition.
We compute the mass shifts and mixing of the Omega and Phi mesons at finite temperature due to scattering from thermal pions. The Rho and b_1 mesons are important intermediate states. Up to a temperature of 140 MeV the Omega mass increases by 12 MeV