ترغب بنشر مسار تعليمي؟ اضغط هنا

Formulations of spin 1 resonances in the chiral lagrangian

165   0   0.0 ( 0 )
 نشر من قبل Masaharu Tanabashi
 تاريخ النشر 1995
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Equivalence of the hidden local symmetry formulation with non-minimal interactions and the anti-symmetric tensor field method of $rho$ and $a_1$ mesons in the chiral lagrangian is shown by using the auxiliary field method. Violation of the KSRF I relation, which becomes important in the application of chiral lagrangian to {em non QCD-like} technicolor models can be parametrized by non-minimal coupling in the hidden local symmetry formalism keeping low energy theorem of hidden local symmetry. We also obtain explicit correspondence of parameters in both formulations.



قيم البحث

اقرأ أيضاً

125 - Martin Bauer 2021
We present a consistent implementation of weak decays involving an axion or axion-like particle in the context of an effective chiral Lagrangian. We argue that previous treatments of such processes have used an incorrect representation of the flavor- changing quark currents in the chiral theory. As an application, we derive model-independent results for the decays $K^-topi^- a$ and $pi^-to e^-bar u_e a$ at leading order in the chiral expansion and for arbitrary axion couplings and mass. In particular, we find that the $K^-topi^- a$ branching ratio is almost 40 times larger than previously estimated.
57 - Li-Ming Wang , Qing Wang 2006
We add a nonstandard higgs into the traditional bosonic part of electroweak chiral Lagrangian, in purpose of finding out the contribution to EWCL coefficients from processes with internal line higgs particle. To construct the effective Lagrangian wit h higgs, we use low energy expansion scheme and write down all the independent terms conserving $SU(2)times U_Y(1)$ symmetry in the nonlinear representation which we show is equivalent to the linear representation. Then we integrate out higgs using loop expansion technique at 1-loop level, contributions from all possible terms are obtained. We find three terms, $mathcal{L}_5$, $mathcal{L}_7$, $mathcal{L}_{10}$ in EWCL are important, for which the contributions from higgs can be further expressed in terms of higgs partial decay width $Gamma_{hto ZZ}$ and $Gamma_{hto WW}$. Higg mass dependence of the coefficients in EWCL are discussed.
We discuss the sensitivity of the $e^+ e^- rightarrow W^+ W^-$ cross section at a future $e^+ e^-$ collider with $sqrt{s}=500$GeV to the non-decoupling effects of a techni-$rho$ like vector resonance. The non-decoupling effects are parametrized by th e chiral coefficients of the electroweak chiral perturbation theory. We define renormalization scale independent chiral coefficients by subtracting the Standard Model loop contributions. We also estimate the size of the decoupling effects of the techni-$rho$ resonance by using a phenomenological Lagrangian including the vector resonance.
The details of Lagrangian description of irreducible integer higher-spin representations of the Poincare group with an Young tableaux $Y[hat{s}_1,hat{s}_2]$ having $2$ columns are considered for Bose particles propagated on an arbitrary dimensional M inkowski space-time. The procedure is based, first, on using of an auxiliary Fock space generated by Fermi oscillators (antisymmetric basis), second, on construction of the Verma module and finding auxiliary oscillator realization for $sl(2)oplus sl(2)$ algebra which encodes the second-class operator constraints subsystem in the HS symmetry superalgebra. Application of an BRST-BFV receipt permits to reproduce gauge-invariant Lagrangians with reducible gauge symmetries describing the free dynamics of both massless and massive mixed-antisymmetric bosonic fields of any spin with appropriate number of gauge and Stueckelberg fields. The general prescription possesses by the possibility to derive constrained Lagrangians with only BRST-invariant extended algebraic constraints which describes the Poincare group irreducible representations in terms of mixed-antisymmetric tensor fields with 2 group indices.
As a successive work to [Phys.Rev.D 102 (2020), 034034], we derive the $1/m_Q$ corrections to chiral effective Lagrangian for heavy-light mesons from QCD under proper approximations. The low energy constants in the effective Lagrangian are expressed in terms of the light quark self-energy and heavy quark mass $m_Q$. Numerical results of the low energy constants with $1/m_Q$ corrections are given. We find that the results of pion decay constant and the masses of heavy-light mesons are improved coherently compared to that obtained in the heavy quark limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا