ﻻ يوجد ملخص باللغة العربية
As a successive work to [Phys.Rev.D 102 (2020), 034034], we derive the $1/m_Q$ corrections to chiral effective Lagrangian for heavy-light mesons from QCD under proper approximations. The low energy constants in the effective Lagrangian are expressed in terms of the light quark self-energy and heavy quark mass $m_Q$. Numerical results of the low energy constants with $1/m_Q$ corrections are given. We find that the results of pion decay constant and the masses of heavy-light mesons are improved coherently compared to that obtained in the heavy quark limit.
We derive the chiral effective Lagrangian for excited heavy-light mesons from QCD under proper approximations. We focus on the chiral partners with $j_l^P=frac{3}{2}^+$ and $j_l^P=frac{3}{2}^-$ which amounts to ($1^+,2^+$) and ($1^-,2^-$) states resp
A previous formal derivation of the effective chiral Lagrangian for low-lying pseudoscalar mesons from first-principles QCD without approximations [Wang et al., Phys. Rev. D61, (2000) 54011] is generalized to further include scalar, vector, and axial
We summarize recently improved results for the pseudoscalar [1,2] and vector [3] meson decay constants and their ratios from QCD spectral sum rules where N2LO + estimate of the N3LO PT and power corrections up to d< 6 dimensions have been included in
Using the SU(3) flavor symmetry, we construct the chiral Lagrangians for the light and heavy pentaquarks. The correction from the nonzero quark is taken into account perturbatively. We derive the Gell-Mann$-$Okubo type relations for various pentaquar
Heavy-light meson system is investigated using the relativistic heavy quark action on the 2+1 dynamical flavor PACS-CS configurations at the lattice spacing $a^{-1}=2.2$ GeV and the spatial extent L=3 fm. Dynamical up-down and strange quark masses as