ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass Bounds for the Neutral Higgs Bosons in the Next-To-Minimal Supersymmetric Standard Model

103   0   0.0 ( 0 )
 نشر من قبل Fabian Franke
 تاريخ النشر 1995
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the Next--To--Minimal Supersymmetric Standard Model (NMSSM), the Higgs and neutralino/chargino sectors are strongly correlated by four common parameters at tree level. Therefore we analyze the experimental data from both the search for Higgs bosons as well as for neutralinos and charginos at LEP 100 in order to constrain the parameter space and the masses of the neutral Higgs particles in the NMSSM. We find that small singlet vacuum expectation values are ruled out, but a massless neutral Higgs scalar and pseudoscalar is not excluded for most of the parameter space of the NMSSM. Improved limits from the neutralino/chargino search at LEP 200, however, may lead to nonvanishing lower Higgs mass bounds.



قيم البحث

اقرأ أيضاً

110 - F. Franke , H. Fraas 1995
The purpose of this paper is to present a complete and consistent list of the Feynman rules for the vertices of neutralinos and Higgs bosons in the Next-To-Minimal Supersymmetric Standard Model (NMSSM), which does not yet exist in the literature. The Feynman rules are derived from the full expression for the Lagrangian and the mass matrices of the neutralinos and Higgs bosons in the NMSSM. Some crucial differences between the vertex functions of the NMSSM and the Minimal Supersymmetric Standard Model (MSSM) are discussed.
195 - F. Franke , H. Fraas , A. Bartl 1994
We analyze the experimental data from the search for new particles at LEP 100 and obtain mass bounds for the neutralinos of the Next--To--Minimal Supersymmetric Standard Model (NMSSM). We find that for $tanbeta gsim 5.5$ a massless neutralino is stil l possible, while the lower mass bound for the second lightest neutralino corresponds approximately to that for the lightest neutralino in the Minimal Supersymmetric Standard Model (MSSM).
108 - S.W. Ham 2001
The neutral Higgs sector of the next-to-minimal supersymmetric standard model (NMSSM) with explicit CP violation is investigated at the 1-loop level, using the effective potential method; not only the loops involving the third generation of quarks an d scalar quarks, but also the loops involving $W$ boson, charged Higgs boson, and chargino are taken into account. It is found that for some parameter values of the NMSSM the contributions from the $W$ boson, charged Higgs boson, and chargino loops may modify the masses of the neutral Higgs bosons and the mixings among them significantly, depending on the CP phase. In $e^+e^-$ collisions, the prospects for discovering neutral Higgs bosons are investigated within the context of the NMSSM with explicit CP violation when the dominant component of the lightest neutral Higgs boson is the Higgs singlet field of the NMSSM.
We consider the fully constrained version of the next-to-minimal supersymmetric extension of the standard model (cNMSSM) in which a singlet Higgs superfield is added to the two doublets that are present in the minimal extension (MSSM). Assuming unive rsal boundary conditions at a high scale for the soft supersymmetry-breaking gaugino, sfermion and Higgs mass parameters as well as for the trilinear interactions, we find that the model is more constrained than the celebrated minimal supergravity model. The phenomenologically viable region in the parameter space of the cNMSSM corresponds to a small value for the universal scalar mass m_0: in this case, one single input parameter is sufficient to describe the phenomenology of the model once the available constraints from collider data and cosmology are imposed. We present the particle spectrum of this very predictive model and discuss how it can be distinguished from the MSSM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا