ﻻ يوجد ملخص باللغة العربية
Cosmological baryon asymmetry B is studied in supersymmetric standard models, assuming the electroweak reprocessing of B and L. Only when the soft supersymmetry breaking is taken into account, B is proportional to the primordial B-L in the supersymmetric standard models. The ratio $B/(B-L)$ is found to be about one percent less than the nonsupersymmetric case. Even if the primordial B-L vanishes, scalar-leptons can be more efficient than leptons to generate B provided that mixing angles $th$ among scalar leptons satisfy $|th| < 10^{-8} (T/{GeV})^{1/2}$.
We investigate the comparative studies of cosmological baryon asymmetry in different neutrino mass models with and without {theta}_13 by considering the three diagonal form of Dirac neutrino mass matrices, down-quark (4,2), up-quark (8,4) and charged
We will review the main aspects of a mechanism for the contemporary generation of the baryon and Dark Matter abundances from the out-of-equilibrium decay of a Wimp-like mother particle and briefly discuss a concrete realization in a Supersymmetric scenario.
String theory has no parameter except the string scale $M_S$, so the Planck scale $M_text{Pl}$, the supersymmetry-breaking scale, the EW scale $m_text{EW}$ as well as the vacuum energy density (cosmological constant) $Lambda$ are to be determined dyn
With the QCD sum rules approach, we study the newly discovered doubly heavy baryon $Xi_{cc}^{++}$. We analytically calculate the next-to-leading order (NLO) contribution to the perturbative part of $J^{P} = frac{1}{2}^{+}$ baryon current with two ide
We propose a novel mechanism of electroweak symmetry breaking in supersymmetric models, as the one recently discussed by Birkedal, Chacko and Gaillard, in which the Standard Model Higgs doublet is a pseudo-Goldstone boson of some global symmetry. The