ﻻ يوجد ملخص باللغة العربية
We investigate the comparative studies of cosmological baryon asymmetry in different neutrino mass models with and without {theta}_13 by considering the three diagonal form of Dirac neutrino mass matrices, down-quark (4,2), up-quark (8,4) and charged lepton (6,2). The predictions of any models with {theta}_13 are consistent in all the three stages of leptogenesis calculations and the results are better than the predictions of any models without {theta}_13 which are consistent in a piecemeal manner with the observational data. For the best model, the normal hierarchy Type-IA for charged lepton (6,2) without {theta}_13, the predicted inflaton mass required to produce the observed baryon asymmetry is found to be 3.6x10 to the power 10 GeV corresponding to reheating temperature TR 4.5x10 to the power 6 GeV, while for the same model with {theta}_13, the inflaton mass is 2.24x10 to the power 11 GeV, TR 4.865x10 to the power 6 GeV and weak scale gravitino mass m(2 divided by 3) 100 GeV without causing the gravitino problem. These values apply to the recent discovery of Higgs boson of mass 125 GeV. The relic abundance of gravitino is proportional to the reheating temperature of the thermal bath. One can have the right order of relic dark matter abundance only if the reheating temperature is bounded to below 10 to the power 7 GeV.
We propose a model to explain tiny masses of neutrinos with the lepton number conservation, where neither too heavy particles beyond the TeV-scale nor tiny coupling constants are required. Assignments of conserving lepton numbers to new fields result
We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming unnatural hierarchy among the mass scales
Baryogenesis via leptogenesis is investigated in a specific model of light neutrino masses and mixing angles. The latter was proposed on the basis of an assumed complex-extended scaling property of the neutrino Majorana mass matrix $M_ u$, derived wi
In this work, we explain three beyond standard model (BSM) phenomena, namely neutrino masses, the baryon asymmetry of the Universe and Dark Matter, within a single model and in each explanation the right handed (RH) neutrinos play the prime role. Ind
We consider theories where the Standard Model (SM) neutrinos acquire masses through the seesaw mechanism at the weak scale. We show that in such a scenario, the requirement that any pre-existing baryon asymmetry, regardless of its origin, not be wash