ترغب بنشر مسار تعليمي؟ اضغط هنا

Leptons and photons at the LHC: cascades through spinless adjoints

95   0   0.0 ( 0 )
 نشر من قبل Rakhi Mahbubani
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the hadron collider phenomenology of (1,0) Kaluza-Klein modes along two universal extra dimensions compactified on the chiral square. Cascade decays of spinless adjoints proceed through tree-level 3-body decays involving leptons as well as one-loop 2-body decays involving photons. As a result, spectacular events with as many as six charged leptons, or one photon plus four charged leptons are expected to be observed at the LHC. Unusual events with relatively large branching fractions include three leptons of same charge plus one lepton of opposite charge, or one photon plus two leptons of same charge. We estimate the current limit from the Tevatron on the compactification scale, set by searches for trilepton events, to be around 270 GeV.



قيم البحث

اقرأ أيضاً

32 - L. Okun 1995
It is assumed that three lepton families $( u_e, e)$, $( u_{mu}, mu)$, $( u_{tau}, tau)$ carry charges, which are sources of electronic, muonic and tauonic massless vector particles, respectively. Various manifestations of these hypothetical photons are discussed.
128 - G.Cacciapaglia 2009
Little Higgs models with T-parity can easily satisfy electroweak precision tests and at the same time give a stable particle which is a candidate for cold dark matter. In addition to little Higgs heavy gauge bosons, this type of models predicts a set of new T-odd fermions, which may show quite interesting signatures at colliders. We study purely leptonic signatures of T-odd leptons at the Large Hadron Collider (LHC).
Based on a number of features from proton-proton collisions taken during Run 1 data taking period at the LHC, a boson with a mass around the Electro-Weak scale was postulated such that a significant fraction of its decays would comprise the Standard Model (SM) Higgs boson and an additional scalar, $S$. One of the phenomenological implications of a simplified model, where $S$ is treated a SM Higgs boson, is the anomalous production of high transverse momentum leptons. A combined study of Run 1 and Run 2 data is indicative of very significant discrepancies between the data and SM Monte Carlos in a variety of final states involving multiple leptons with and without $b$-quarks. These discrepancies appear in corners of the phase-space where different SM processes dominate, indicating that the potential mismodeling of a particular SM process is unlikely to explain them. Systematic uncertainties from the prediction of SM processes evaluated with currently available tools seem unable to explain away these discrepancies. The internal consistency of these anomalies and their interpretation in the framework of the original hypothesis is quantified.
The hierarchy of the Yukawa couplings is an outstanding problem of the standard model. We present a class of models in which the first and second generation fermions are SUSY partners of pseudo-Nambu-Goldstone bosons that parameterize a non-compact K ahler manifold, explaining the small values of these fermion masses relative to those of the third generation. We also provide an example of such a model. We find that various regions of the parameter space in this scenario can give the correct dark matter abundance, and that nearly all of these regions evade other phenomenological constraints. We show that for gluino mass ~700 GeV, model points from these regions can be easily distinguished from other mSUGRA points at the LHC with only 7 fb^(-1) of integrated luminosity at 14 TeV. The most striking signatures are a dearth of b- and tau-jets, a great number of multi-lepton events, and either an inverted slepton mass hierarchy, narrowed slepton mass hierarchy, or characteristic small-mu spectrum.
Low-scale gaugino mediation predicts that gauginos are significantly heavier than scalar superpartners. In order of increasing mass the lightest superpartners are the gravitino, right-handed sleptons and left-handed sleptons (no light neutralino!). T his implies that squark decay chains pass through one or more sleptons and typical final states from squark and gluino production at the LHC include multiple leptons. In addition, left-handed staus have large branching fractions into right-handed staus and the Higgs. As an example, we compute the spectrum of low-scale deconstructed gaugino mediation. In this model gauginos acquire masses at tree level at 5 TeV while scalar masses are generated radiatively from the gaugino masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا