ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the Nambu-Goldstone Hypothesis for Quarks and Leptons at the LHC

241   0   0.0 ( 0 )
 نشر من قبل Sourav Mandal
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The hierarchy of the Yukawa couplings is an outstanding problem of the standard model. We present a class of models in which the first and second generation fermions are SUSY partners of pseudo-Nambu-Goldstone bosons that parameterize a non-compact Kahler manifold, explaining the small values of these fermion masses relative to those of the third generation. We also provide an example of such a model. We find that various regions of the parameter space in this scenario can give the correct dark matter abundance, and that nearly all of these regions evade other phenomenological constraints. We show that for gluino mass ~700 GeV, model points from these regions can be easily distinguished from other mSUGRA points at the LHC with only 7 fb^(-1) of integrated luminosity at 14 TeV. The most striking signatures are a dearth of b- and tau-jets, a great number of multi-lepton events, and either an inverted slepton mass hierarchy, narrowed slepton mass hierarchy, or characteristic small-mu spectrum.



قيم البحث

اقرأ أيضاً

Phenomenological implications of a minimal extension to the Standard Model are considered, in which a Nambu-Goldstone boson emerges from the spontaneous breaking of a global U(1) symmetry. This is felt only by a scalar field which is a singlet under all Standard Model symmetries, and possibly by neutrinos. Mixing between the Standard Model Higgs boson field and the new singlet field may lead to predominantly invisible Higgs boson decays. The natural region in the Higgs boson mass spectrum is determined, where this minimally extended Standard Model is a valid theory up to a high scale related with the smallness of neutrino masses. Surprisingly, this region may coincide with low visibility of all Higgs bosons at the LHC. Monte-Carlo simulation studies of this nightmare situation are performed and strategies to search for such Higgs boson to invisible (Nambu-Goldstone boson) decays are discussed. It is possible to improve the signal-to-background ratio by looking at the distribution of either the total transverse momentum of the leptons and the missing transverse momentum, or by looking at the distribution of the azimuthal angle between the missing transverse momentum and the momentum of the lepton pair for the Z- and Higgs-boson associated production. We also study variations of the model with non-Abelian symmetries and present approximate formulae for Higgs boson decay rates. Searching for Higgs bosons in such a scenario at the LHC would most likely be solely based on Higgs to invisible decays.
The non-Abelian discrete symmetry D(7) of the heptagon is successfully applied to both quark and lepton mass matrices, including CP violation.
Pseudo-Goldstone dark matter coupled to the Standard Model via the Higgs portal offers an attractive framework for phenomenologically viable pseudo-scalar dark matter. It enjoys natural suppression of the direct detection rate due to the vanishing of the relevant (tree level) Goldstone boson vertex at zero momentum transfer, which makes light WIMP-like dark matter consistent with the strong current bounds. In this work, we explore prospects of detecting pseudo-Goldstone dark matter at the LHC, focusing on the vector boson fusion (VBF) channel with missing energy. We find that, in substantial regions of parameter space, relatively light dark matter ($m_chi < 100$ GeV) can be discovered in the high luminosity run as long as it is produced in decays of the Higgs-like bosons.
An evidence for a diphoton resonance at a mass of 750 GeV has been observed in the data collected at the LHC run at a center of mass energy of 13 TeV. We explore several interpretations of this signal in terms of Higgs-like resonances in a two-Higgs doublet model and its supersymmetric incarnation, in which the heavier CP-even and CP-odd states present in the model are produced in gluon fusion and decay into two photons through top quark loops. We show that one cannot accommodate the observed signal in the minim
We study the hadron collider phenomenology of (1,0) Kaluza-Klein modes along two universal extra dimensions compactified on the chiral square. Cascade decays of spinless adjoints proceed through tree-level 3-body decays involving leptons as well as o ne-loop 2-body decays involving photons. As a result, spectacular events with as many as six charged leptons, or one photon plus four charged leptons are expected to be observed at the LHC. Unusual events with relatively large branching fractions include three leptons of same charge plus one lepton of opposite charge, or one photon plus two leptons of same charge. We estimate the current limit from the Tevatron on the compactification scale, set by searches for trilepton events, to be around 270 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا