ﻻ يوجد ملخص باللغة العربية
The Bulk Randall-Sundrum model, where all Standard Model particles except the Higgs are free to propagate in the bulk, predicts the existence of Kaluza-Klein (KK) modes of the gluon with a large branching into top-antitop pairs. We study the production of the lowest KK gluon mode at the Tevatron energy and use the data on the top cross-section from the Run II of Tevatron to put a bound on the mass of the KK gluon. The resulting bound of 800 GeV, while being much smaller than the constraints obtained on the KK gluon mass from flavour-changing neutral currents, is the first, direct collider bound which is independent of the specificities of the model.
We present a Randall-Sundrum toy model with an added scalar singlet that couples only to KK fermions in the bulk. Such a scalar would nontrivially affect radion phenomenology. In addition, we examine the radion phenomenology in light of the new scala
Randall Sundrum models provide a possible explanation of (gauge-gravity) hierarchy, whereas discrete symmetry flavor groups yield a possible description of the texture of Standard Model fermion masses. We use both these ingredients to propose a five-
Observational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Ran
We study the effect of the inclusion of bulk brane viscosity on brane world (BW) cosmology in the framework of the Eckarts theory, we focus in the Randall-Sundrum model with negative tension on the brane.
The Kaluza-Klein excitations of gluons offer the exciting possibility of probing bulk Randall-Sundrum (RS) models. In these bulk models either a custodial symmetry or a deformation of the metric away from AdS is invoked in order to deal with electrow