ﻻ يوجد ملخص باللغة العربية
We construct a supersymmetric standard model in the context of the $Z_{12-I}$ orbifold compactification of the heterotic string theory. The gauge group is $SU(3)_ctimes SU(2)_Ltimes U(1)_Ytimes U(1)^4times[SO(10)times U(1)^3]$. We obtain three chiral families, $3times{Q,d^c,u^c,L,e^c, u^c}$, and Higgs doublets. There are numerous neutral singlets many of which can have VEVs so that low energy phenomenology on Yukawa couplings can be satisfied. In one assignment (Model E) of the electroweak hypercharge, we obtain the string scale value of $sin^2theta_W^0={3/8}$ and another exactly massless {it exphoton} (in addition to the photon) coupling to exotic particles only. There are color triplet and anti-triplet exotics, $alpha$ and $bar{alpha}$, $SU(2)_L$ doublet exotics, $delta$ and $bar{delta}$, and $SU(3)_ctimes SU(2)_L$ singlet but $Y={2/3},-{1/3},-{2/3},{1/3}$ exotics, $xi,eta,bar{xi}, bar{eta}$. We show that all these vector-like exotics achieve heavy masses by appropriate VEVs of neutral singlets. One can find an effective R-parity between light (electroweak scale) particles so that proton and the LSP can live sufficiently long. In another assignment (Model S) of the electroweak hypercharge, there does not appear any exotic particle but $sin^2theta_W^0={3/14}$.
In string compactifications, frequently there appears the anomalous U(1) gauge symmetry which belonged to E8$times$E8 of the heterotic string. This anomalous U(1) gauge boson obtains mass at the compactification scale, just below $10^{18,}$GeV, by ab
The strategy for assigning $Z_{4R}$ parity in the string compactification is presented. For the visible sector, an anti-SU(5) (flipped-SU(5)) grand unification (GUT) model with three families is used to reduce the number of representations compared t
We construct a supersymmetric standard model in the context of the Z_{12-I} orbifold compactification of the E_8 x E_8 heterotic string theory. The gauge group is SU(3)_c x SU(2)_L x U(1)_Y x U(1)^4 x [SO(10) x U(1)^3] with sin^2theta_W = 3/8. We obt
From the current ATLAS and CMS results on Higgs boson mass and decay rates, the NMSSM is obviously better than the MSSM. To explain the fine-tuning problems such as gauge hiearchy problem and strong CP problem in the SM, we point out that supersymmet
R-parity conservation is an {it ad hoc} assumption in the most popular version of the supersymmetric standard model. Most studies of models which do allow for R-parity violation have been restricted to various limiting scenarios. The single-VEV param