ترغب بنشر مسار تعليمي؟ اضغط هنا

Quarkonia in the deconfined phase: effective potentials and lattice correlators

33   0   0.0 ( 0 )
 نشر من قبل Arturo De Pace
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English
 تأليف W.M. Alberico




اسأل ChatGPT حول البحث

The Schroedinger equation for the charmonium and bottomonium states at finite temperature is solved by employing an effective temperature dependent potential given by a linear combination of the color singlet free and internal energies obtained on the lattice from the Polyakov loop correlation functions. The melting temperatures and other properties of the quarkonium states are evaluated. The consistency of the potential model approach with the available lattice data on the quarkonium temporal correlators and spectral functions is explored.


قيم البحث

اقرأ أيضاً

50 - W.M. Alberico 2007
We update our recent calculation of quarkonium Euclidean correlators at finite temperatures in a potential model by including the effect of zero modes in the lattice spectral functions. These contributions cure most of the previously observed discrep ancies with lattice calculations, supporting the use of potential models at finite temperature as an important tool to complement lattice studies.
160 - Yiannis Makris , Ivan Vitev 2019
The problem of quarkonium production in heavy ion collisions presents a set of unique theoretical challenges -- from the relevant production mechanism of $J/psi$ and $Upsilon$ to the relative significance of distinct cold and hot nuclear matter effec ts in the observed attenuation of quarkonia. Inthese proceedings we summarize recent work on the generalization of non-relativistic Quantum Chromodynamics (NRQCD) to include off-shell gluon (Glauber/Coulomb) interactions in strongly interacting matter. This new effective theory provides for the first time a universal microscopic description of the in-medium interaction of heavy quarkonia, consistently applicable to a range of phases such as cold nuclear matter, dense hadron gas, and quark-gluon plasma. It is an important step forward in understanding the common trends in proton-nucleus and nucleus-nucleus data on quarkonium suppression. We derive explicitly the leading and sub-leading interaction terms in the Lagrangian and show the connection of the leading result to existing phenomenology.
303 - T. Manke 2000
We present non-perturbative results for the spectrum of heavy quarkonia. Using an anisotropic formulation of Lattice QCD we achieved an unprecedented control over statistical and systematic errors. We also study relativistic corrections to the leadin g order predictions for heavy hybrids and conventional bound states.
59 - M. Asakawa , T. Hatsuda 2003
Analyzing correlation functions of charmonia at finite temperature ($T$) on $32^3times(32-96)$ anisotropic lattices by the maximum entropy method (MEM), we find that $J/psi$ and $eta_c$ survive as distinct resonances in the plasma even up to $T simeq 1.6 T_c$ and that they eventually dissociate between $1.6 T_c$ and $1.9 T_c$ ($T_c$ is the critical temperature of deconfinement). This suggests that the deconfined plasma is non-perturbative enough to hold heavy-quark bound states. The importance of having sufficient number of temporal data points in MEM analyses is also emphasized.
We study the role of diquarks in light baryons through point to point baryon correlators. We contrast results from quenched simulations with ones with two flavors of dynamical overlap fermions. The scalar, pseudoscalar and axial vector diquarks are c ombined with light quarks to form color singlets. The quenched simulation shows large zero mode effects in correlators containing the scalar and pseudoscalar diquark. The two scalar diquarks created by gamma_5 and gamma_0gamma_5 lead to different behavior in baryon correlators, showing that the interaction of diquarks with the third light quark matters: we do not see an isolated diquark. In our quark mass range, the scalar diquark created by gamma_5 seems to play a greater role than the others.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا