ﻻ يوجد ملخص باللغة العربية
In the framework of the littlest Higgs($LH$) model and the littlest Higgs model with T-parity($LHT$), We investigate the single top production process $e^{-}gammato u_{e}bbar{t}$, and calculate the corrections of these two models to the cross section of this process. We find that in the reasonable parameter space, the correction terms for the tree-level $Wtb$ couplings coming from the $LHT$ model can generate significantly corrections to the cross section of this process, which might be detected in the future high energy linear $e^{+}e^{-}$ collider($ILC$) experiments. However, the contributions of the new gauge boson $W^{pm}_{H}$ predicted by the $LH$ model to this process is very small.
In the frameworks of the littlest Higgs($LH$) model and its extension with T-parity($LHT$), we studied the associated $tbar th^0$ production process $e^+ e^- to gammagamma to t bar t h^0$ at the future $e^+e^-$ linear colliders up to QCD next-to-lead
We study heavy physics effects on the Higgs production in $gamma gamma $ fusion using the effective Lagrangian approach. We find that the effects coming from new physics may enhance the standard model predictions for the number of events expected in
The new colored vector-like heavy fermion $T$ is a crucial prediction in little Higgs models, which plays a key role in breaking the electroweak symmetry. The littlest Higgs model is the most economical one among various little Higgs models. In the c
For the search for additional Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM) as well as for future precision analyses in the Higgs sector a precise knowledge of their production properties is mandatory. We review the evaluation of t
Though the predictions of the Standard Model (SM) are in excellent agreement with experiments there are still several theoretical problems, such as fine-tuning and the hierarchy problem. These problems are associated with the Higgs sector of the SM,