ﻻ يوجد ملخص باللغة العربية
The new colored vector-like heavy fermion $T$ is a crucial prediction in little Higgs models, which plays a key role in breaking the electroweak symmetry. The littlest Higgs model is the most economical one among various little Higgs models. In the context of the littlest Higgs model, we study single production of the new heavy vector-like quark via $e^{-}gamma$ collisions and discuss the possibility of detecting this new particle in the TeV energy $e^{+}e^{-}$ collider(LC). We find that the production cross section can vary in a wide range($10^{-3}-10^{1}fb$) in most parameter spaces. For the favorable parameter spaces, the possible signals of the vector-like top quark $T$ can be detected via $e^{-}gamma$ collisions in future $LC$ experiment with $sqrt{s}=3TeV$ and $pounds=500fb^{-1}$.
In the framework of the littlest Higgs($LH$) model and the littlest Higgs model with T-parity($LHT$), We investigate the single top production process $e^{-}gammato u_{e}bbar{t}$, and calculate the corrections of these two models to the cross sectio
The littlest Higgs model with discrete symmetry named T-parity(LHT) is an interesting new physics model which does not suffer strong constraints from electroweak precision data. One of the important features of the LHT model is the existence of new s
In the framework of topcolor-assisted technicolor model we calculate the contributions from the pseudo Goldstone bosons and new gauge bosons to $e^+e^- to tbar{t}$. We find that, for reasonable ranges of the parameters, the pseudo Goldstone bosons af
With high luminosity and energy at the ILC and clean SM backgrounds, the top-charm production at the ILC should have powerful potential to probe new physics. The littlest Higgs model with discrete symmetry named T-parity(LHT) is one of the most promi
The physics prospect at future linear $e^{+}e^{-}$ colliders for the study of the Higgs triple self-coupling via the process of $e^{+}e^{-}to ZHH$ is investigated. In this paper, we calculate the contribution of the new particles predicted by the lit