ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the effect of neutrino oscillations on the supernova neutrino signal in the LVD detector

70   0   0.0 ( 0 )
 نشر من قبل Marco Selvi
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The LVD detector, located in the INFN Gran Sasso National Laboratory (Italy), studies supernova neutrinos through the interactions with protons and carbon nuclei in the liquid scintillator and interactions with the iron nuclei of the support structure. We investigate the effect of neutrino oscillations in the signal expected in the LVD detector. The MSW effect has been studied in detail for neutrinos travelling through the collapsing star and the Earth. We show that the expected number of events and their energy spectrum are sensitive to the oscillation parameters, in particular to the mass hierarchy and the value of $theta_{13}$, presently unknown. Finally we discuss the astrophysical uncertainties, showing their importance and comparing it with the effect of neutrino oscillations on the expected signal.

قيم البحث

اقرأ أيضاً

We present an update of our previous study (astro-ph/0112312) on how $ u$ oscillations affect the signal from a supernova core collapse observed in the LVD detector at LNGS. In this paper we use a recent, more precise determination of the cross secti on (astro-ph/0302055) to calculate the expected number of inverse beta decay events, we introduce in the simulation also the $ u$-{rm Fe} interactions, we include the Earth matter effects and, finally, we study also the inverted mass hierarchy case.
46 - M.Aglietta , P.Antonioli , G.Bari 2001
We study the impact of neutrino oscillations on the supernova neutrino signal in the Large Volume Detector (LVD). The number of expected events for a galactic supernova (D=10 kpc) is calculated, assuming neutrino masses and mixing that explain solar and atmospheric neutrino results. The possibility to detect neutrinos in different channels makes LVD sensitive to different scenarios for neutrino properties, such as normal or inverted neutrino mass hierarchy, and/or adiabatic or non adiabatic MSW resonances associated to U(e3). Of particular importance are the charged current reactions on carbon: oscillations increase by almost one order of magnitude the number of events expected from this channel.
In this paper we show the capabilities of the Large Volume Detector (INFN Gran Sasso National Laboratory) to identify a neutrino burst associated to a supernova explosion, in the absence of an external trigger, e.g., an optical observation. We descri be how the detector trigger and event selection have been optimized for this purpose, and we detail the algorithm used for the on-line burst recognition. The on-line sensitivity of the detector is defined and discussed in terms of supernova distance and electron anti-neutrino intensity at the source.
A high-density calorimeter, consisting of magnetized iron planes interleaved by RPCs, as tracking and timing devices, is a good candidate for a next generation experiment on atmospheric neutrinos. With 34 kt of mass and in four years of data taking, this experiment will be sensitive to $ u_mu to u_x$ oscillation with $Delta m^2 > 6 times 10^{-5}$ and mixing near to maximal and fully cover the region of oscillation parameters suggested by Super-Kamiokande results. Moreover, the experimental method will enable to measure the oscillation parameters from the modulation of the L/E spectrum ($ u_mu$ disappearance). For $Delta m^2 > 3 times 10^{-3}$ eV$^2$, this experiment can also establish whether the oscillation occurs into a tau or a sterile neutrino, by looking for an excess of muon-less events at high energies produced by upward-going tau neutrinos ($ u_tau$ appearance).
We report the results of a study aimed at quantifying the impact on the oscillation analysis of the uncertainties associated with the description of the neutrino-nucleus cross section in the two-particle--two-hole sector. The results of our calculati ons, based on the kinematic method of energy reconstruction and carried out comparing two data-driven approaches, show that the existing discrepancies in the neutrino cross sections have a sizable effect on the extracted oscillation parameters, particularly in the antineutrino channel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا