ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of neutrino oscillations on the supernova signal in LVD

47   0   0.0 ( 0 )
 نشر من قبل Walter Fulgione
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the impact of neutrino oscillations on the supernova neutrino signal in the Large Volume Detector (LVD). The number of expected events for a galactic supernova (D=10 kpc) is calculated, assuming neutrino masses and mixing that explain solar and atmospheric neutrino results. The possibility to detect neutrinos in different channels makes LVD sensitive to different scenarios for neutrino properties, such as normal or inverted neutrino mass hierarchy, and/or adiabatic or non adiabatic MSW resonances associated to U(e3). Of particular importance are the charged current reactions on carbon: oscillations increase by almost one order of magnitude the number of events expected from this channel.

قيم البحث

اقرأ أيضاً

The LVD detector, located in the INFN Gran Sasso National Laboratory (Italy), studies supernova neutrinos through the interactions with protons and carbon nuclei in the liquid scintillator and interactions with the iron nuclei of the support structur e. We investigate the effect of neutrino oscillations in the signal expected in the LVD detector. The MSW effect has been studied in detail for neutrinos travelling through the collapsing star and the Earth. We show that the expected number of events and their energy spectrum are sensitive to the oscillation parameters, in particular to the mass hierarchy and the value of $theta_{13}$, presently unknown. Finally we discuss the astrophysical uncertainties, showing their importance and comparing it with the effect of neutrino oscillations on the expected signal.
We present an update of our previous study (astro-ph/0112312) on how $ u$ oscillations affect the signal from a supernova core collapse observed in the LVD detector at LNGS. In this paper we use a recent, more precise determination of the cross secti on (astro-ph/0302055) to calculate the expected number of inverse beta decay events, we introduce in the simulation also the $ u$-{rm Fe} interactions, we include the Earth matter effects and, finally, we study also the inverted mass hierarchy case.
In this paper we show the capabilities of the Large Volume Detector (INFN Gran Sasso National Laboratory) to identify a neutrino burst associated to a supernova explosion, in the absence of an external trigger, e.g., an optical observation. We descri be how the detector trigger and event selection have been optimized for this purpose, and we detail the algorithm used for the on-line burst recognition. The on-line sensitivity of the detector is defined and discussed in terms of supernova distance and electron anti-neutrino intensity at the source.
Based on the shell model for Gamow-Teller and the Random Phase Approximation for forbidden transitions, we have calculated reaction rates for inelastic neutrino-nucleus scattering (INNS) under supernova (SN) conditions, assuming a matter composition given by Nuclear Statistical Equilibrium. The rates have been incorporated into state-of-the-art stellar core-collapse simulations with detailed energy-dependent neutrino transport. While no significant effect on the SN dynamics is observed, INNS increases the neutrino opacities noticeably and strongly reduces the high-energy tail of the neutrino spectrum emitted in the neutrino burst at shock breakout. Relatedly the expected event rates for the observation of such neutrinos by earthbound detectors are reduced by up to about 60%.
In this work we analyze quantum decoherence in neutrino oscillations considering the Open Quantum System framework and oscillations through matter for three neutrino families. Taking DUNE as a case study we performed sensitivity analyses for two neut rino flux configurations finding limits for the decoherence parameters. We also offer a physical interpretation for a new peak which arises at the $ u_{e}$ appearance probability with decoherence. The best sensitivity regions found for the decoherence parameters are $Gamma_{21}le 1.2times10^{-23},text{GeV}$ and $Gamma_{32}le 7.7times10^{-25},text{GeV}$ at $90%$ C. L.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا