ترغب بنشر مسار تعليمي؟ اضغط هنا

Constituent Quark Masses and the Electroweak Standard Model

266   0   0.0 ( 0 )
 نشر من قبل George Rupp
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Constituent quark masses can be determined quite well from experimental data in several ways and one can obtain fairly accurate values for all six $m_q$. The strong quark-meson coupling $g=2pi /sqrt{3}$ arises from the quark-level linear $sigma$ model, whereas $e$ and $sintheta_w$ arise from weak interactions when the heavy $M_W$ and $M_Z$ are regarded as resonances in analogy with the strong KSFR relation. The Higgs boson mass, tied to null expectation value of charged Higgs components, is found to be around 317 GeV. Finally, the experimental CPV phase angle $delta$ and the three CKM angles $Theta_c, Theta_2, Theta_3$ are successfully deduced from the 6 constituent quark masses following Fritzschs approach.

قيم البحث

اقرأ أيضاً

190 - Guo-yuan Huang , Shun Zhou 2020
The precise values of the running quark and lepton masses $m^{}_f(mu)$, which are defined in the modified minimal subtraction scheme ($overline{rm MS}$) with $mu$ being the renormalization scale and the subscript $f$ referring to all the charged ferm ions in the Standard Model (SM), are very useful for the model building of fermion masses and flavor mixing and for the precision calculations in the SM or its new-physics extensions. In this paper, we calculate the running fermion masses by taking account of the up-to-date experimental results collected by Particle Data Group and the latest theoretical higher-order calculations of relevant renormalization-group equations and matching conditions in the literature. The emphasis is placed on the quantitative estimation of current uncertainties on the running fermion masses, and the linear error propagation method is adopted to quantify the uncertainties, which has been justified by the Monte-Carlo simulations. We identify two main sources of uncertainties, i.e., one from the experimental inputs and the other from the truncations at finite-order loops. The correlations among the uncertainties of running parameters can be remarkable in some cases. The final results of running fermion masses at several representative energy scales are tabulated for further applications.
We present a relativistic constituent-quark model that covers all known baryons from the nucleon up to $Omega_{bbb}$. The corresponding invariant mass operator includes a linear confinement and a hyperfine interaction based on effective degrees of fr eedom. The model provides for a unified description of practically all baryon spectra in good agreement with present phenomenology and it can tentatively be employed for the relativistic treatment of all kinds of baryon reactions. Predictions of states still missing in the phenomenological data base, especially in the lesser explored heavy-flavor sectors of charm and bottom baryons, should be important especially for future experiments in these areas.
101 - Aaron Park , Su Houng Lee 2020
We calculate the matrix elements of the color-spin interaction for all possible multi-quark states of tribaryons in flavor SU(3) broken case. For that purpose, we construct the flavor$otimes$color$otimes$spin wave functions of the tribaryons, which a re taken to be antisymmetric to satisfy the Pauli exclusion principle. Furthermore, we analyze the diquark structure of the tribaryon configurations using the symmetric and antisymmetric basis set of flavor, color and spin states.
We explore a simple parameterization of new physics that results in an ultraviolet complete gauge-quark sector of the Standard Model. Specifically, we add an antiscreening contribution to the beta functions of the gauge couplings and a flavor-indepen dent, antiscreening contribution to the beta functions of the Yukawa couplings. These two free parameters give rise to an intricate web of Renormalization Group fixed points. Their predictive power extends to the flavor structure and mixing patterns, which we investigate to demonstrate that some of the free parameters of the Standard Model could be determined by the Renormalization Group flow.
80 - L. Bellagamba 2006
We summarize the recent results on electroweak physics and physics beyond the Standard Model that have been presented at the XIV International Workshop on Deep Inelastic Scattering 2006.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا