ﻻ يوجد ملخص باللغة العربية
This article reports an automated approach to the evaluation of higher-order terms of QED perturbation to anomalous magnetic moments of charged leptons by numerical means. We apply this approach to tenth-order correction due to a particular subcollection of Feynman diagrams, which have no virtual lepton loops. This set of diagrams is distinctive in that it grows factorially in number as the order increases, and also each of the diagrams holds quite a large number of subtraction terms to be treated along renormalization procedure. Thus some automated scheme has long been required to evaluate correctly this class of diagrams. We developed a fast algorithm and an implementation which automates necessary steps to generate from the representation of each Feynman diagram the FORTRAN codes for numerical integration. Currently those diagrams of tenth order are being evaluated.
Among 12672 Feynman diagrams contributing to the electron anomalous magnetic moment at the tenth order, 6354 are the diagrams having no lepton loops, i.e., those of quenched type. Because the renormalization structure of these diagrams is very compli
We have developed an efficient algorithm for the subtraction of infrared divergences that arise in the evaluation of QED corrections to the anomalous magnetic moment of lepton (g-2). By incorporating this new algorithm, we have extended the automated
The generic unparticle propagator may be modified in two ways. Breaking the conformal symmetry effectively adds a mass term to the propagator, while considering vacuum polarization corrections adds a width-like term. Both of these modifications resul
Improved values for the two- and three-loop mass-dependent QED contributions to the anomalous magnetic moments of the electron, muon, and tau lepton are presented. The Standard Model prediction for the electron (g-2) is compared with its most precise
The ratios among the leading-order (LO) hadronic vacuum polarization (HVP) contributions to the anomalous magnetic moments of electron, muon and tau-lepton, $a_{ell=e,mu tau}^{HVP,LO}$, are computed using lattice QCD+QED simulations. The results incl