ﻻ يوجد ملخص باللغة العربية
We study the trinified model, SU(3)_C x SU(3)_L x SU(3)_R x Z_3, with the minimal Higgs sector required for symmetry breaking. There are five Higgs doublets, and gauge-coupling unification results if all five are at the weak scale, without supersymmetry. The radiative see-saw mechanism yields sub-eV neutrino masses, without the need for intermediate scales, additional Higgs fields, or higher-dimensional operators. The proton lifetime is above the experimental limits, with the decay modes p -> bar u K^+ and p -> mu^+ K^0 potentially observable. We also consider supersymmetr
The flipped trinification, a framework for unifying the 3-3-1 and left-right symmetries, has recently been proposed in order to solve profound questions, the weak parity violation and the number of families, besides the implication for neutrino mass
We propose a model which unifies the Left-Right symmetry with the $SU(3)_L$ gauge group, called flipped trinification, and based on the $SU(3)_Cotimes SU(3)_Lotimes SU(3)_Rotimes U(1)_X$ gauge group. The model inherits the interesting features of bot
Models with spontaneously broken parity symmetry can solve the strong $CP$ problem in a natural way. We construct such a model in the context of $SU3^3$ unification. Parity has the conventional meaning in this model, and the gauge group is unified.
We propose a low-scale renormalizable trinification theory that successfully explains the flavor hierarchies and neutrino puzzle in the Standard Model (SM), as well as provides a dark matter candidate and also contains the necessary means for efficie
We consider a non-supersymmetric $E_6$ Grand Unified Theory (GUT) with intermediate trinification symmetry $SU(3)_C times SU(3)_L times SU(3)_R times D$ (D denoted as D-parity for discrete left-right symmetry) and study the effect of one-loop thresho