ﻻ يوجد ملخص باللغة العربية
We propose a low-scale renormalizable trinification theory that successfully explains the flavor hierarchies and neutrino puzzle in the Standard Model (SM), as well as provides a dark matter candidate and also contains the necessary means for efficient leptogenesis. The proposed theory is based on the trinification $SU{3}{C}times SU{3}{L}times SU{3}{R}$ gauge symmetry, which is supplemented with an additional flavor symmetry $U{X}times Z_{2}^{(1)} times Z_{2}^{(2)}$. In the proposed model the top quark and the exotic fermions acquire tree-level masses, whereas the lighter SM charged fermions gain masses radiatively at one-loop level. In addition, the light active neutrino masses arise from a combination of radiative and type-I seesaw mechanisms, with the Dirac neutrino mass matrix generated at one-loop level.
We have studied dark matter (DM) phenomenology, neutrinoless double beta decay (NDBD) and realised low scale leptogenesis in a simple extension of Standard Model(SM) with three neutral fermions, a scalar doublet and a dark sector incorporating a sing
We study $S_{4}$ flavor symmetric inverse seesaw model which has the possibility of simultaneously addressing neutrino phenomenology, dark matter (DM) and baryon asymmetry of the universe (BAU) through leptogenesis. The model is the extension of the
In the Minimal Supersymmetric Standard Model (MSSM), the scalar neutrino $tilde{ u}_L$ has odd R parity, yet it has long been eliminated as a dark-matter candidate because it scatters elastically off nuclei through the $Z$ boson, yielding a cross sec
In this work we study a classically scale invariant extension of the Standard Model that can explain simultaneously dark matter and the baryon asymmetry in the universe. In our set-up we introduce a dark sector, namely a non-Abelian SU(2) hidden sect
We study a generic leptophilic $U(1)_X$ extension of the standard model with a light gauge boson. The $U(1)_X$ charge assignments for the leptons are guided by lepton universality violating (LUV) observables in semileptonic $b to sellell$ decays, muo