ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadronic Interactions of Ultra-High Energy Photons with Protons and Light Nuclei in the Dipole Picture

359   0   0.0 ( 0 )
 نشر من قبل Ted Rogers
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the dipole formalism that has been developed to describe low-x deep inelastic scattering to the case of ultra-high energy real photons with nucleon and nuclear targets. We hope that there will be future modeling applications in high-energy particle astrophysics. We modify the dipole model of McDermott, Frankfurt, Guzey, and Strikman (MFGS) by fixing the cross section at the maximum value allowed by the unitarity constraint whenever the dipole model would otherwise predict a unitarity violation. We observe that, under reasonable assumptions, a significant fraction of the real photon cross section results from dipole interactions where the QCD coupling constant is small, and that the MFGS model is consistent with the Froissart bound. The resulting model predicts a rise of the cross section of about a factor of 12 when the the photon energy is increased from $10^{3}$ GeV to $10^{12}$ GeV. We extend the analysis to the case of scattering off a $^{12}$C target. We find that, due to the low thickness of the light nuclei, unitarity for the scattering off individual nucleons plays a larger role than for the scattering off the nucleus as a whole. At the same time the proximity to the black disk limit results in a substantial increase of the amount of nuclear shadowing. This, in turn, slows down the rate of increase of the total cross section with energy as compared to the proton case. As a result we find that the $^{12}$C nuclear cross section rises by about a factor of 7 when the photon energy is increased from $10^{3}$ GeV to $10^{12}$ GeV. We also find that the fraction of the cross section due to production of charm reaches 30% for the highest considered energies with a $^{12}$C target.



قيم البحث

اقرأ أيضاً

At any epoch, particle physics must be open to completely unexpected discoveries, and that is reason enough to extend the reach of searches for ultra-high energy (UHE) photons. The observation of a population of photons with energies $E gtrsim 100$ E eV would for example imply the existence of either a completely new physical phenomena, or particle acceleration mechanisms heretofore never seen or imagined. But as we outline in this Letter of Interest, there are also good arguments for super-heavy dark matter (SHDM) in a parameter range such that it could be discovered via its decays to, in particular, UHE photons. Only ultra-high energy cosmic ray observatories have capabilities to detect UHE photons. We first investigate how current and future observations can probe and constrain SHDM models in important directions, and then outline some of the scenarios that motivate such searches. We also discuss connections between constraints on SHDM and on the parameter values of cosmological models.
55 - Sofia Andringa 2017
The Pierre Auger Observatory is a hybrid detector for cosmic rays with E > 1EeV. From the gathered data we estimated the proton-proton cross-section at sqrt(s) = 55 TeV and tested other features of the hadronic interaction models, which use extrapola tions from the LHC energy. The electromagnetic component, carrying most of the energy of the shower, is precisely measured using fluorescence telescopes, while the hadronic back- bone of the shower is indirectly tested by measuring the muons arriving to the surface detector. The analyses show that models fail to describe these two components consistently, predicting too few muons at the ground.
The strange-anticharmed Pentaquark is a $uudbar{c}s$ or $uddbar{c}s$ five-quark baryon that is expected to be either a narrow resonance, or possibly even stable against strong and electromagnetic decay. We describe this hyperon here, its structure, b inding energy and lifetime, resonance width, production mechanisms, production cross sections, and decay modes. We describe techniques to reduce backgrounds in search experiments and to optimize the conditions for Pentaquark observation. Possibilities for enhancing the signal over background in Pentaquark searches are investigated by examining predictions for detailed momentum and angular distributions in multiparticle final states. General model-independent predictions are presented as well as those from two models: a loosely bound $D_{s}^-N$ molecule and a strongly-bound five-quark system. Fermilab E791 data, currently being analyzed, may have marginal statistics for showing definitive signals. Future experiments in the spirit of the recent CHARM2000 workshop, such as FNAL E781 and CERN CHEOPS with $10^6-10^7$ reconstructed charmed baryon events, should have sensitivity to determine whether or not the Pentaquark exists.
159 - G. Vannoni 2009
Clusters of galaxies are believed to be capable to accelerate protons at accretion shocks to energies exceeding 10^18 eV. At these energies, the losses caused by interactions of cosmic rays with photons of the Cosmic Microwave Background Radiation (C MBR) become effective and determine the maximum energy of protons and the shape of the energy spectrum in the cutoff region. The aim of this work is the study of the formation of the energy spectrum of accelerated protons at accretion shocks of galaxy clusters and of the characteristics of their broad band emission. The proton energy distribution is calculated self-consistently via a time-dependent numerical treatment of the shock acceleration process which takes into account the proton energy losses due to interactions with the CMBR. We calculate the energy distribution of accelerated protons, as well as the flux of broad-band emission produced by secondary electrons and positrons via synchrotron and inverse Compton scattering processes. We find that the downstream and upstream regions contribute almost at the same level to the emission. For the typical parameters characterising galaxy clusters, the synchrotron and IC peaks in the spectral energy distributions appear at comparable flux levels. For an efficient acceleration, the expected emission components in the X-ray and gamma-ray band are close to the detection threshold of current generation instruments, and will be possibly detected with the future generation of detectors.
137 - V. Berezinsky 2009
The status of the Greisen-Zatsepin-Kuzmin (GZK) cutoff and pair-production dip in Ultra High Energy Cosmic Rays (UHECR) is discussed.They are the features in the spectrum of protons propagating through CMB radiation in extragalactic space, and discov ery of these features implies that primary particles are mostly extragalactic protons. The spectra measured by AGASA, Yakutsk, HiRes and Auger detectors are in good agreement with the pair-production dip, and HiRes data have strong evidences for the GZK cutoff. The Auger spectrum,as presented at the 30th ICRC 2007, agrees with the GZK cutoff, too. The AGASA data agree well with the beginning of the GZK cutoff at E leq 80 EeV, but show the excess of events at higher energies, the origin of which is not understood. The difference in the absolute fluxes measured by different detectors disappears after energy shift within the systematic errors of each experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا