ﻻ يوجد ملخص باللغة العربية
The Pierre Auger Observatory is a hybrid detector for cosmic rays with E > 1EeV. From the gathered data we estimated the proton-proton cross-section at sqrt(s) = 55 TeV and tested other features of the hadronic interaction models, which use extrapolations from the LHC energy. The electromagnetic component, carrying most of the energy of the shower, is precisely measured using fluorescence telescopes, while the hadronic back- bone of the shower is indirectly tested by measuring the muons arriving to the surface detector. The analyses show that models fail to describe these two components consistently, predicting too few muons at the ground.
Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events
The characteristics of an extensive air shower derive from both the mass of the primary ultra-high-energy cosmic ray that seeds its development and the properties of the hadronic interactions that feed it. With its hybrid detector design, the Pierre
Earth--skimming UHE tau neutrinos have a chance to be detected by the Fluorescence Detector (FD) of Pierre Auger Observatory if their astrophysical flux is large enough. A detailed evaluation of the expected number of events is here performed for a wide class of neutrino flux models.
The Pierre Auger Observatory, located in Argentina, provides an unprecedented integrated aperture for the search of photons with energy above 100 PeV. In this contribution recent results are presented including the diffuse search for photons and the
Ongoing and planned enhancements of the Pierre Auger Observatory