ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Dark Matter in the MSSM at the LHC

70   0   0.0 ( 0 )
 نشر من قبل Giacomo Polesello
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the event that R-Parity conserving supersymmetry (SUSY) is discovered at the LHC, a key issue which will need to be addressed will be the consistency of that signal with astrophysical and non-accelerator constraints on SUSY Dark Matter. This issue is studied for the SPA benchmark model based on measurements of end-points and thresholds in the invariant mass spectra of various combinations of leptons and jets. These measurements are used to constrain the soft SUSY breaking parameters at the electroweak scale in a general MSSM model. Based on these constraints, we assess the accuracy with which the Dark Matter relic density can be measured.



قيم البحث

اقرأ أيضاً

We study the collider phenomenology of dark matter pair production at the LHC in simplified dark matter models and in the MSSM. Among the large space of dark matter models, we focus on two particular models where a fermionic dark matter candidate int eracts with the Standard Model via the exchange of either a vector mediator in the s-channel or coloured scalar mediators in the t-channel. We find that the simplified models are capable of reproducing the predictions of the MSSM to some extent in simplified supersymmetric scenarios, but lack the complexity to descibe the complete theory over the full supersymmetric parameter space.
116 - A.R. Raklev , M.J. White 2009
Recently, a claim of possible evidence for Dark Matter in data from the Fermi LAT experiment was made by Goodenough and Hooper [8]. We test the Dark Matter properties consistent with their claim in terms of the MSSM by a 24-dimensional parameter scan using nested sampling, excluding all but a very small region of the MSSM. Although this claim is very preliminary, and not made by the Fermi LAT experiment, our scan shows a possible approach for the analysis of future firm evidence from an indirect detection experiment, and its potential for heavily constraining models.
Light neutralino dark matter can be achieved in the Minimal Supersymmetric Standard Model if staus are rather light, with mass around 100 GeV. We perform a detailed analysis of the relevant supersymmetric parameter space, including also the possibili ty of light selectons and smuons, and of light higgsino- or wino-like charginos. In addition to the latest limits from direct and indirect detection of dark matter, ATLAS and CMS constraints on electroweak-inos and on sleptons are taken into account using a simplified models framework. Measurements of the properties of the Higgs boson at 125 GeV, which constrain amongst others the invisible decay of the Higgs boson into a pair of neutralinos, are also implemented in the analysis. We show that viable neutralino dark matter can be achieved for masses as low as 15 GeV. In this case, light charginos close to the LEP bound are required in addition to light right-chiral staus. Significant deviations are observed in the couplings of the 125 GeV Higgs boson. These constitute a promising way to probe the light neutralino dark matter scenario in the next run of the LHC.
We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied e xisting experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.
We study a scenario in which the dilaton, a pseudo-Goldstone boson of the spontaneous breaking of conformal symmetry, provides a portal between dark matter and the visible sector. We consider the low-energy description of the theory in which the dila ton mixes with the Standard Model Higgs boson, thereby predicting a second scalar at or above the weak scale. We derive the collider and dark matter constraints on the corresponding parameter space and find that existing experimental data point towards the decoupling limit in which the CFT scale is well above the electroweak scale. Moreover, the thermal production of dark matter implies its mass is likely above the TeV scale. Upcoming direct detection experiments may allow for the discovery of the dilaton-mediated thermal dark matter while future collider studies will also be sensitive to the available parameter space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا