ترغب بنشر مسار تعليمي؟ اضغط هنا

Kaon semi-leptonic form factor in lattice QCD

165   0   0.0 ( 0 )
 نشر من قبل Andreas Juttner
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Andreas Juttner




اسأل ChatGPT حول البحث

This talk reviews recent lattice QCD simulations of the K->pi semi-leptonic form factor.



قيم البحث

اقرأ أيضاً

We develop a method to compute inclusive semi-leptonic decay rate of hadrons fully non-perturbatively using lattice QCD simulations. The sum over all possible final states is achieved by a calculation of the forward-scattering matrix elements on the lattice, and the phase-space integral is evaluated using their dependence on the time separation between two inserted currents. We perform a pilot lattice computation for the B_s -> X_c l nu decay with an unphysical bottom quark mass and compare the results with the corresponding OPE calculation. The method to treat the inclusive processes on the lattice can be applied to other processes, such as the lepton-nucleon inelastic scattering.
We present the first calculation of the kaon semileptonic form factor with sea and valence quark masses tuned to their physical values in the continuum limit of 2+1 flavour domain wall lattice QCD. We analyse a comprehensive set of simulations at the phenomenologically convenient point of zero momentum transfer in large physical volumes and for two different values of the lattice spacing. Our prediction for the form factor is f+(0)=0.9685(34)(14) where the first error is statistical and the second error systematic. This result can be combined with experimental measurements of K->pi decays for a determination of the CKM-matrix element for which we predict |Vus|=0.2233(5)(9) where the first error is from experiment and the second error from the lattice computation.
We present the first results for the Kl3 form factor from simulations with 2+1 flavours of dynamical domain wall quarks. Combining our result, namely f_+(0)=0.964(5), with the latest experimental results for Kl3 decays leads to |V_{us}|=0.2249(14), r educing the uncertaintity in this important parameter. For the O(p^6) term in the chiral expansion we obtain Delta f=-0.013(5).
134 - Shoichi Sasaki 2012
We present the first result for the hyperon vector form factor f_1 for Xi^0 -> Sigma^+ l bar{nu} and Sigma^- -> n l bar{nu} semileptonic decays from fully dynamical lattice QCD. The calculations are carried out with gauge configurations generated by the RBC and UKQCD collaborations with (2+1)-flavors of dynamical domain-wall fermions and the Iwasaki gauge action at beta=2.13, corresponding to a cutoff 1/a=1.73 GeV. Our results, which are calculated at the lighter three sea quark masses (the lightest pion mass down to approximately 330 MeV), show that a sign of the second-order correction of SU(3) breaking on the hyperon vector coupling f_1(0) is negative. The tendency of the SU(3) breaking correction observed in this work disagrees with predictions of both the latest baryon chiral perturbation theory result and large N_c analysis.
We calculate the kaon semileptonic form factors in lattice QCD with three flavors of dynamical overlap quarks. Gauge ensembles are generated at pion masses as low as 290 MeV and at a strange quark mass near its physical value. We precisely calculate relevant meson correlators using the all-to-all quark propagator. Twisted boundary conditions and the reweighting technique are employed to vary the momentum transfer and the strange quark mass. We discuss the chiral behavior of the form factors by comparing with chiral perturbation theory and experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا