ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing Lorentz Invariance using Zeeman Transitions in Atomic Fountains

169   0   0.0 ( 0 )
 نشر من قبل Peter Wolf
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English
 تأليف Peter Wolf




اسأل ChatGPT حول البحث

Lorentz Invariance (LI) is the founding postulate of Einsteins 1905 theory of relativity, and therefore at the heart of all accepted theories of physics. It characterizes the invariance of the laws of physics in inertial frames under changes of velocity or orientation. This central role, and indications from unification theories hinting toward a possible LI violation, have motivated tremendous experimental efforts to test LI. A comprehensive theoretical framework to describe violations of LI has been developed over the last decade: the Lorentz violating Standard Model Extension (SME). It allows a characterization of LI violations in all fields of present day physics using a large (but finite) set of parameters which are all zero when LI is satisfied. All classical tests (e.g. Michelson-Morley or Kennedy-Thorndike experiments) can be analyzed in the SME, but it also allows the conception of new types of experiments, not thought of previously. We have carried out such a conceptually new LI test, by comparing particular atomic transitions (particular orientations of the involved nuclear spins) in the $^{133}$Cs atom using a cold atomic fountain clock. This allows us to test LI in a previously largely unexplored region of the SME parameter space, corresponding to first measurements of four proton parameters and an improvement by 11 and 12 orders of magnitude on the determination of four others. In spite of the attained accuracies, and of having extended the search into a new region of the SME, we still find no indication of LI violation.


قيم البحث

اقرأ أيضاً

65 - Xinyi Zhang , Bo-Qiang Ma 2018
A recent work [Y. Huang and B.-Q. Ma, Commun. Phys. {bf 1}, 62 (2018)] associated all four PeV neutrinos observed by IceCube to gamma-ray bursts (GRBs), and revealed a regularity which indicates a Lorentz violation scale $E_{rm LV}=(6.5pm0.4)times10^ {17}$ GeV with opposite sign factors $s=pm 1$ between neutrinos and antineutrinos. The association of time delay and time advance events with neutrinos and antineutrinos (or vice versa) is only a hypothesis since the IceCube detector cannot tell the chirality of the neutrinos, and further experimental tests are needed to verify this hypothesis. We derive the values of the CPT-odd Lorentz violating parameters in the standard-model extension (SME) framework, and perform a threshold analysis on the electron-positron pair emission of the superluminal neutrinos (or antineutrinos). We find that different neutrino/antineutrino propagation properties, suggested by Y. Huang and B.-Q. Ma, can be described in the SME framework with both Lorentz invariance and CPT symmetry violation, but with a threshold energy constraint. A viable way on testing the CPT symmetry violation between neutrinos and antineutrinos is suggested.
We present an analysis designed to search for Lorentz and CPT violations as predicted by the SME framework using the charged current neutrino events in the MINOS near detector. In particular we develop methods to identify periodic variations in the n ormalized number of charged current neutrino events as a function of sidereal phase. To test these methods, we simulated a set of 1,000 experiments without Lorentz and CPT violation signals using the standard MINOS Monte Carlo. We performed an FFT on each of the simulated experiments to find the distribution of powers in the sidereal phase diagram without a signal. We then injected a signal of increasing strength into the sidereal neutrino oscillation probability until we found a 5$sigma$ deviation from the mean in the FFT power spectrum. By this method, we can establish upper limits for the Lorentz and CPT violating terms in the SME.
81 - J.P. Noordmans 2016
We consider the low-energy effects of a selected set of Lorentz- and CPT-violating quark and gluon operators by deriving the corresponding chiral effective lagrangian. Using this effective lagrangian, low-energy hadronic observables can be calculated . We apply this to magnetometer experiments and derive the best bounds on some of the Lorentz-violating coefficients. We point out that progress can be made by studying the nucleon-nucleon potential, and by considering storage-ring experiments for deuterons and other light nuclei.
For the purpose of searching for Lorentz-invariance violation in the minimal Standard-Model Extension, we perfom a reanalysis of data obtained from the $^{133}text{Cs}$ fountain clock operating at SYRTE. The previous study led to new limits on eight components of the $tilde{c}_{mu u}$ tensor, which quantifies the anisotropy of the proton kinetic energy. We recently derived an advanced model for the frequency shift of hyperfine Zeeman transition due to Lorentz violation and became able to constrain the ninth component, the isotropic coefficient $tilde{c}_{TT}$, which is the least well-constrained coefficient of $tilde{c}_{mu u}$. This model is based on a second-order boost Lorentz transformation from the laboratory frame to the Sun-centered frame, and it gives rise to an improvement of five orders of magnitude on $tilde{c}_{TT}$ compared to the state of the art.
In the last years a general consensus has emerged on the use of ultra-high energy cosmic rays (UHECR) data as a powerful probe of the validity of special relativity. This applies in particular to the propagation of cosmic rays from their sources to E arth, responsible for energy suppressions due to pion photoproduction by UHE protons (the Greisen-Zatsepin Kuzmin limit) and photo disintegration of UHE nuclei (the Gerasimova-Rozental limit). A suppression in the flux of UHECRs at energies above 40 EeV -- as expected from both these interactions -- has been established experimentally beyond any doubt by current experiments. However, such an observation is still not conclusive on the origin of the suppression. In particular, data from the Pierre Auger Observatory can be interpreted in a scenario in which the suppression is due to the maximum acceleration energy at the sources rather than to interactions in the background radiation. In this scenario, UHECR data can no longer yield bounds on Lorentz invariance violations which increase the thresholds for interactions of nuclei on background photons, in particular through modification of the dispersion relations. Here we argue in turn that the study of UHECRs still represents an opportunity to test Lorentz invariance, by discussing the possibility of deriving limits on violation parameters from UHECR phenomena other than propagation. In particular we study the modifications of the shower development in the atmosphere due to the possible inhibition of the decay of unstable particles, especially neutral pions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا