ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing Lorentz and CPT Invariance with MINOS Near Detector Neutrinos

129   0   0.0 ( 0 )
 نشر من قبل Brian Rebel
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis designed to search for Lorentz and CPT violations as predicted by the SME framework using the charged current neutrino events in the MINOS near detector. In particular we develop methods to identify periodic variations in the normalized number of charged current neutrino events as a function of sidereal phase. To test these methods, we simulated a set of 1,000 experiments without Lorentz and CPT violation signals using the standard MINOS Monte Carlo. We performed an FFT on each of the simulated experiments to find the distribution of powers in the sidereal phase diagram without a signal. We then injected a signal of increasing strength into the sidereal neutrino oscillation probability until we found a 5$sigma$ deviation from the mean in the FFT power spectrum. By this method, we can establish upper limits for the Lorentz and CPT violating terms in the SME.



قيم البحث

اقرأ أيضاً

390 - P. Adamson , D. S. Ayres , G. Barr 2012
We have searched for sidereal variations in the rate of antineutrino interactions in the MINOS Near Detector. Using antineutrinos produced by the NuMI beam, we find no statistically significant sidereal modulation in the rate. When this result is pla ced in the context of the Standard Model Extension theory we are able to place upper limits on the coefficients defining the theory. These limits are used in combination with the results from an earlier analysis of MINOS neutrino data to further constrain the coefficients.
We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the Standard-Model Extension framework. It also would be the first detection of a perturb ative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of $20-510$ over the current best limits found using the MINOS near detector.
65 - Xinyi Zhang , Bo-Qiang Ma 2018
A recent work [Y. Huang and B.-Q. Ma, Commun. Phys. {bf 1}, 62 (2018)] associated all four PeV neutrinos observed by IceCube to gamma-ray bursts (GRBs), and revealed a regularity which indicates a Lorentz violation scale $E_{rm LV}=(6.5pm0.4)times10^ {17}$ GeV with opposite sign factors $s=pm 1$ between neutrinos and antineutrinos. The association of time delay and time advance events with neutrinos and antineutrinos (or vice versa) is only a hypothesis since the IceCube detector cannot tell the chirality of the neutrinos, and further experimental tests are needed to verify this hypothesis. We derive the values of the CPT-odd Lorentz violating parameters in the standard-model extension (SME) framework, and perform a threshold analysis on the electron-positron pair emission of the superluminal neutrinos (or antineutrinos). We find that different neutrino/antineutrino propagation properties, suggested by Y. Huang and B.-Q. Ma, can be described in the SME framework with both Lorentz invariance and CPT symmetry violation, but with a threshold energy constraint. A viable way on testing the CPT symmetry violation between neutrinos and antineutrinos is suggested.
We review the status of CPT violation in the neutrino sector. Apart from LSND, current data favors three flavors of light stable neutrinos and antineutrinos, with both halves of the spectrum having one smaller mass splitting and one larger mass split ting. Oscillation data for the smaller splitting is consistent with CPT. For the larger splitting, current data favor an antineutrino mass-squared splitting that is an order of magnitude larger than the corresponding neutrino splitting, with the corresponding mixing angle less-than-maximal. This CPT-violating spectrum is driven by recent results from MINOS, but is consistent with other experiments if we ignore LSND. We describe an analysis technique which, together with MINOS running optimized for muon antineutrinos, should be able to conclusively confirm the CPT-violating spectrum proposed here, with as little as three times the current data set. If confirmed, the CPT-violating neutrino mass-squared difference would be an order of magnitude less than the current most-stringent upper bound on CPT violation for quarks and charged leptons.
190 - Ralf Lehnert 2009
The largest gap in our understanding of nature at the fundamental level is perhaps a unified description of gravity and quantum theory. Although there are currently a variety of theoretical approaches to this question, experimental research in this f ield is inhibited by the expected Planck-scale suppression of quantum-gravity effects. However, the breakdown of spacetime symmetries has recently been identified as a promising signal in this context: a number of models for underlying physics can accommodate minuscule Lorentz and CPT violation, and such effects are amenable to ultrahigh-precision tests. This presentation will give an overview of the subject. Topics such as motivations, the SME test framework, mechanisms for relativity breakdown, and experimental tests will be reviewed. Emphasis is given to observations involving antimatter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا