ﻻ يوجد ملخص باللغة العربية
Using a three step quantization and phenomenological formulae, we can deduce the rest masses and intrinsic quantum numbers (I, S, C, B and Q) of quarks from only one unflavored elementary quark family $epsilon$ with S = C = B = 0 in the vacuum. Then using sum laws, we can deduce the rest masses and intrinsic quantum numbers of baryons and meson from the deduced quarks. The deduced quantum numbers match experimental results exactly. The deduced rest masses are consistent with experimental results. This paper predicts some new quarks [d_{s}(773), d_{s}(1933), u_{c}(6073), d_{b}(9333)], baryons [$Lambda_{c}$(6699), $Lambda_{b}$(9959)] and mesons [D(6231), B(9502)]. PACS: 12.60.-i; 12.39.-x; 14.65.-q; 14.20.-c Key word: beyond the standard model
Using phenomenological formulae, we can deduce the rest masses and intrinsic quantum numbers (I, S, C, B and Q) of quarks, baryons and mesons from only one unflavored elementary quark family. The deduced quantum numbers match experimental results exa
Using an expanded form of Planck-Bohrs quantization method and phenomenological formulae,} {small we deduce the rest masses and intrinsic quantum numbers (I, S, C, b and Q) of all kinds of the lowest energy quarks and baryons, from only one elementar
From the Dirac sea concept, we infer that a body center cubic quark lattice exists in the vacuum. Adapting the electron Dirac equation, we get a special quark Dirac equation. Using its low-energy approximation, we deduced the rest masses of the quark
Using phenomenological formulae, we deduce the masses and quantum numbers of the quarks from two elementary quarks ($epsilon_{u}$ and $epsilon_{d}$) first. Then using the sum laws and a binding energy formula, in terms of the qqq baryon model and SU(
We update results presented at Lattice 2005 on charmonium masses. New ensembles of gauge configurations with 2+1 flavors of improved staggered quarks have been analyzed. Statistics have been increased for other ensembles. New results are also availab