ﻻ يوجد ملخص باللغة العربية
Using phenomenological formulae, we can deduce the rest masses and intrinsic quantum numbers (I, S, C, B and Q) of quarks, baryons and mesons from only one unflavored elementary quark family. The deduced quantum numbers match experimental results exactly, and the deduced rest masses are 98.5% (or 97%) consistent with experimental results for baryons (or mesons). This paper predicts some quarks [d_{S}(773), d_{S}(1933) and u_{C}(6073)], baryons [$Lambda_{c}(6599)$, $Lambda_{b)(9959)$] and mesons [D(6231), B(9502)]. PACS: 12.39.-x; 14.65.-q; 14.20.-c. Keywords: phenomenological, beyond the standard model.
Using a three step quantization and phenomenological formulae, we can deduce the rest masses and intrinsic quantum numbers (I, S, C, B and Q) of quarks from only one unflavored elementary quark family $epsilon$ with S = C = B = 0 in the vacuum. Then
Using phenomenological formulae, we deduce the masses and quantum numbers of the quarks from two elementary quarks ($epsilon_{u}$ and $epsilon_{d}$) first. Then using the sum laws and a binding energy formula, in terms of the qqq baryon model and SU(
From only two elementary quarks ($epsilon_{u}(0) $ and $epsilon_{d}(0)) $ and the symmetries of the regular rhombic dodecahedron, using phenomenological formulae, we deduced the rest masses and the intrinsic quantum numbers (I, S, C, b and Q) of a qu
The quark and charged lepton masses and the angles and phase of the CKM mixing matrix are nicely reproduced in a model which assumes SU(3)xSU(3) flavour symmetry broken by the v.e.v.s of fields in its bi-fundamental representation. The relations amon
From the Dirac sea concept, we infer that a body center cubic quark lattice exists in the vacuum. Adapting the electron Dirac equation, we get a special quark Dirac equation. Using its low-energy approximation, we deduced the rest masses of the quark