ﻻ يوجد ملخص باللغة العربية
We have studied neutron quantum states in the potential well formed by the earths gravitational field and a horizontal mirror. The estimated characteristic sizes of the neutron wave functions in the two lowest quantum states correspond to expectations with an experimental accuracy. A position-sensitive neutron detector with an extra-high spatial resolution of ~2 microns was developed and tested for this particular experiment, to be used to measure the spatial density distribution in a standing neutron wave above a mirror for a set of some of the lowest quantum states. The present experiment can be used to set an upper limit for an additional short-range fundamental force. We studied methodological uncertainties as well as the feasibility of improving further the accuracy of this experiment.
An upper limit to non-Newtonian attracive forces is obtained from the measurement of quantum states of neutrons in the Earths gravitational field. This limit improves the existing constrains in the nanometer range.
The lowest stationary quantum state of neutrons in the Earths gravitational field is identified in the measurement of neutron transmission between a horizontal mirror on the bottom and an absorber on top. Such an assembly is not transparent for neutr
In this paper we use the AdS/CFT correspondence to refine and then establish a set of old conjectures about symmetries in quantum gravity. We first show that any global symmetry, discrete or continuous, in a bulk quantum gravity theory with a CFT dua
Two-dimensional random surfaces are studied numerically by the dynamical triangulation method. In order to generate various kinds of random surfaces, two higher derivative terms are added to the action. The phases of surfaces in the two-dimensional p
We propose a thought experiment to detect low-energy Quantum Gravity phenomena using Quantum Optical Information Technologies. Gravitational field perturbations, such as gravitational waves and quantum gravity fluctuations, decohere the entangled pho