ﻻ يوجد ملخص باللغة العربية
Given the existing empirical information about the exotic Theta+ baryon, we analyze possible properties of its SU(3)F-partners, paying special attention to the nonstrange member of the antidecuplet N*. The modified piN partial-wave analysis presents two candidate masses, 1680 MeV and 1730 MeV. In both cases, the N* should be rather narrow and highly inelastic. Our results suggest several directions for experimental studies that may clarify properties of the antidecuplet baryons, and structure of their mixing with other baryons. Recent experimental evidence from the GRAAL and STAR Collaborations could be interpreted as observations of a candidate for the Theta+ nonstrange partner.
Given presently known empirical information about the exotic Theta+ baryon, we analyze possible properties of its SU(3)F partners, paying special attention to the nonstrange member of the antidecuplet N*. The modified PWA analysis presents two candid
We describe the relativistic interacting quark-diquark model formalism and its application to the calculation of strange and nonstrange baryon spectra. The results are compared to the existing experimental data. We also discuss the application of the
Some of the recent progress in the physics of pion production induced by neutrinos on nucleons and nuclei is reviewed from a theoretical perspective. The importance of Watsons theorem to reconcile ANL and BNL data with the off-diagonal Goldberger-Tre
Recently developed methods allowing to find the solutions of the Bethe-Salpeter equations in Minkowski space, both for the bound and scattering states, are reviewed. For the bound states, one obtains the bound state mass and the corresponding BS ampl
We study the implications of the heavy-quark spin symmetry for the possible spin partners of the exotic states $Z_b(10610)$ and $Z_b(10650)$ in the spectrum of bottomonium. We formulate and solve numerically the coupled-channel equations for the $Z_b