ترغب بنشر مسار تعليمي؟ اضغط هنا

An interacting quark-diquark model. Strange and nonstrange baryon spectroscopy and other observables

64   0   0.0 ( 0 )
 نشر من قبل Jacopo Ferretti
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the relativistic interacting quark-diquark model formalism and its application to the calculation of strange and nonstrange baryon spectra. The results are compared to the existing experimental data. We also discuss the application of the model to the calculation of other baryon observables, like baryon magnetic moments, open-flavor strong decays and baryon masses with self-energy corrections.

قيم البحث

اقرأ أيضاً

Given the existing empirical information about the exotic Theta+ baryon, we analyze possible properties of its SU(3)F-partners, paying special attention to the nonstrange member of the antidecuplet N*. The modified piN partial-wave analysis presents two candidate masses, 1680 MeV and 1730 MeV. In both cases, the N* should be rather narrow and highly inelastic. Our results suggest several directions for experimental studies that may clarify properties of the antidecuplet baryons, and structure of their mixing with other baryons. Recent experimental evidence from the GRAAL and STAR Collaborations could be interpreted as observations of a candidate for the Theta+ nonstrange partner.
Given presently known empirical information about the exotic Theta+ baryon, we analyze possible properties of its SU(3)F partners, paying special attention to the nonstrange member of the antidecuplet N*. The modified PWA analysis presents two candid ate masses, 1680 MeV and 1730 MeV. In both cases the N* should be highly inelastic. The theoretical analysis, based on the soliton picture and assumption of Gamma(Theta+) < 5 MeV, shows that most probably Gamma(N*) < 30 MeV. Similar analysis for Xi3/2 predicts its width to be not more than about 10 MeV. Our results suggest several directions for experimental studies that may clarify properties of the antidecuplet baryons, and structure of their mixing with other baryons.
In the framework chiral SU(3) quark model, the baryon spectra within the band of $Nleq 2$ are studied, and the effect of the confining potential in different configurations, namely the $Delta$-mode and Y-mode are compared. In the same way, the baryon spectra in the extended chiral SU(3) quark model, in which additional vector meson exchanges are introduced, are also calculated. It is shown that a reasonable baryon spectrum in the chiral SU(3) quark model can be achieved no matter whether the $Delta$-mode or the Y-mode confining potential is employed. In the extended chiral SU(3) quark model, several energy levels are further improved. The resultant binding energies of excited baryon states in different confining modes deviate just by a few to several tens MeV, and it is hard to justify which confining mode is the dominant one. The non-strange baryon strong decay widths are further discussed in the point-like meson emission model by using the wave-function obtained in the spectrum calculation. The resultant widths can generally explain the experimental data but still cannot distinguish which confining mode is more important in this simple decay mode.
The strong decays of charm-strange baryons up to N=2 shell are studied in a chiral quark model. The theoretical predictions for the well determined charm-strange baryons, $Xi_c^*(2645)$, $Xi_c(2790)$ and $Xi_c(2815)$, are in good agreement with the e xperimental data. This model is also extended to analyze the strong decays of the other newly observed charm-strange baryons $Xi_c(2930)$, $Xi_c(2980)$, $Xi_c(3055)$, $Xi_c(3080)$ and $Xi_c(3123)$. Our predictions are given as follows. (i) $Xi_c(2930)$ might be the first $P$-wave excitation of $Xi_c$ with $J^P=1/2^-$, favors the $|Xi_c ^2P_lambda 1/2^->$ or $|Xi_c ^4P_lambda 1/2^->$ state. (ii) $Xi_c(2980)$ might correspond to two overlapping $P$-wave states $|Xi_c ^2P_rho 1/2^->$ and $|Xi_c ^2P_rho 3/2^->$, respectively. The $Xi_c(2980)$ observed in the $Lambda_c^+bar{K}pi$ final state is most likely to be the $|Xi_c ^2P_rho 1/2^->$ state, while the narrower resonance with a mass $msimeq 2.97$ GeV observed in the $Xi_c^*(2645)pi$ channel favors to be assigned to the $|Xi_c ^2P_rho 3/2^->$ state. (iii) $Xi_c(3080)$ favors to be classified as the $|Xi_c S_{rhorho} 1/2^+>$ state, i.e., the first radial excitation (2S) of $Xi_c$. (iv) $Xi_c(3055)$ is most likely to be the first $D$-wave excitation of $Xi_c$ with $J^P=3/2^+$, favors the $|Xi_c ^2D_{lambdalambda} 3/2^+>$ state. (v) $Xi_c(3123)$ might be assigned to the $|Xi_c ^4D_{lambdalambda} 3/2^+>$, $|Xi_c ^4D_{lambdalambda} 5/2^+>$, or $|Xi_c ^2D_{rhorho} 5/2^+>$ state. As a by-product, we calculate the strong decays of the bottom baryons $Sigma_b^{pm}$, $Sigma_b^{*pm}$ and $Xi_b^*$, which are in good agreement with the recent observations as well.
70 - T. Melde , W. Plessas , B. Sengl 2006
We report on a study of pi and eta decays of strange baryon resonances within relativistic constituent-quark models based on one-gluon-exchange and Goldstone-boson-exchange dynamics. The investigations are performed in the point form of Poincare-inva riant relativistic quantum mechanics with a spectator-model decay operator. The covariant predictions of the constituent-quark models underestimate the experimental data in most cases. These findings are congruent with an earlier study of nonstrange baryon decays in the light-flavor sector. We also consider a nonrelativistic reduction of the point-form spectator model, which leads to the decay operator of the elementary emission model. For some decays the nonrelativistic results differ substantially from the relativistic ones and they exhibit no uniform behavior as they scatter above and below the experimental decay widths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا