ﻻ يوجد ملخص باللغة العربية
The C2/M1 ratio of the electromagnetic N->Delta(1232) transition, which is important for determining the geometric shape of the nucleon, is shown to be related to the neutron elastic form factor ratio G_C^n/G_M^n. The proposed relation holds with good accuracy for the entire range of momentum transfers where data are available.
The magnetic dipole, the electric quadrupole and the Coulomb quadrupole amplitudes for the transition $gamma Nto Delta$ are evaluated both in quenched lattice QCD at $beta=6.0$ and using two dynamical Wilson fermions simulated at $beta=5.6$. The dipo
The magnetic dipole, the electric quadrupole and the Coulomb quadrupole amplitudes for the transition gamma Nto Delta are calculated in quenched lattice QCD at beta=6.0 with Wilson fermions. Using a new method combining an optimal combination of inte
By the analysis of the world data base of elastic electron scattering on the proton and the neutron (for the latter, in fact, on $^2H$ and $^3He$) important experimental insights have recently been gained into the flavor compositions of nucleon elect
Dalitz decays of a hyperon resonance to a ground-state hyperon and an electron-positron pair can give access to some information about the composite structure of hyperons. We present expressions for the multi-differential decay rates in terms of gene
We present a new method to determine the momentum dependence of the N to Delta transition form factors and demonstrate its effectiveness in the quenched theory at $beta=6.0$ on a $32^3 times 64$ lattice. We address a number of technical issues such a