ﻻ يوجد ملخص باللغة العربية
The magnetic dipole, the electric quadrupole and the Coulomb quadrupole amplitudes for the transition $gamma Nto Delta$ are evaluated both in quenched lattice QCD at $beta=6.0$ and using two dynamical Wilson fermions simulated at $beta=5.6$. The dipole transition form factor is accurately determined at several values of momentum transfer. On the lattices studied in this work, the electric quadrupole amplitude is found to be non-zero yielding a negative value for the ratio, $ R_{EM}$, of electric quadrupole to magnetic dipole amplitudes at three values of momentum transfer.
The magnetic dipole, the electric quadrupole and the Coulomb quadrupole amplitudes for the transition gamma Nto Delta are calculated in quenched lattice QCD at beta=6.0 with Wilson fermions. Using a new method combining an optimal combination of inte
The electromagnetic form factors of the proton and the neutron are computed within lattice QCD using simulations with quarks masses fixed to their physical values. Both connected and disconnected contributions are computed. We analyze two new ensembl
Precision computation of hadronic physics with lattice QCD is becoming feasible. The last decade has seen percent-level calculations of many simple properties of mesons, and the last few years have seen calculations of baryon masses, including the nu
We present a new method to determine the momentum dependence of the N to Delta transition form factors and demonstrate its effectiveness in the quenched theory at $beta=6.0$ on a $32^3 times 64$ lattice. We address a number of technical issues such a
The electromagnetic nucleon to Delta transition form factors are evaluated using two degenerate flavors of dynamical Wilson fermions and using dynamical sea staggered fermions with domain wall valence quarks. The two subdominant quadrupole form facto