ﻻ يوجد ملخص باللغة العربية
Primordial Heavy neutrinos of 4th generation might explain different astrophysical puzzles: indeed the simplest 4th neutrino scenario may be still consistent with known 4th neutrino physics, cosmic ray anti-matter and gamma fluxes and signals in underground detectors for a very narrow neutrino mass windows (46-47 GeV). We have analyzed extended Heavy neutrino models related to the clumpiness of neutrino density, new interactions in Heavy neutrino annihilation, neutrino asymmetry, neutrino decay. We found that in these models the underground signals maybe better combined with the cosmic ray imprint leading to a wider windows for neutrino mass (46-75 GeV) coinciding with the whole range allowed from uncertainties of electro-weak parameters.
A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Q
It is argued that cosmological models that feature a flow of energy from dark energy to dark matter may solve the coincidence problem of late acceleration (i.e., why the energy densities of both components are of the same order precisely today?). How
A complete macromolecule modeling package must be able to solve the simplest structure prediction problems. Despite recent successes in high resolution structure modeling and design, the Rosetta software suite fares poorly on deceptively small protei
We propose a new mechanism producing a non-vanishing lepton number asymmetry, based on decays of heavy Majorana neutrinos. If they are produced out of equilibrium, as occurs in preheating scenario, and are superpositions of mass eigenstates rapidly d
The Cygnus X region contains giant molecular cloud complexes and populous associates of massive young stars. The discovery of spatially extended, hard gamma-ray emission in Cygnus X by both Milagro and Fermi indicates that Cygnus X is also a potentia