ﻻ يوجد ملخص باللغة العربية
A complete macromolecule modeling package must be able to solve the simplest structure prediction problems. Despite recent successes in high resolution structure modeling and design, the Rosetta software suite fares poorly on deceptively small protein and RNA puzzles, some as small as four residues. To illustrate these problems, this manuscript presents extensive Rosetta results for four well-defined test cases: the 20-residue mini-protein Trp cage, an even smaller disulfide-stabilized conotoxin, the reactive loop of a serine protease inhibitor, and a UUCG RNA tetraloop. In contrast to previous Rosetta studies, several lines of evidence indicate that conformational sampling is not the major bottleneck in modeling these small systems. Instead, approximations and omissions in the Rosetta all-atom energy function currently preclude discriminating experimentally observed conformations from de novo models at atomic resolution. These molecular puzzles should serve as useful model systems for developers wishing to make foundational improvements to this powerful modeling suite.
Equilibrium sampling of biomolecules remains an unmet challenge after more than 30 years of atomistic simulation. Efforts to enhance sampling capability, which are reviewed here, range from the development of new algorithms to parallelization to nove
No existing algorithm can start with arbitrary RNA sequences and return the precise, three-dimensional structures that ensures their biological function. This chapter outlines current algorithms for automated RNA structure prediction (including our o
DNA microarrays are devices that are able, in principle, to detect and quantify the presence of specific nucleic acid sequences in complex biological mixtures. The measurement consists in detecting fluorescence signals from several spots on the micro
We analytically derive the lower bound of the total conformational energy of a protein structure by assuming that the total conformational energy is well approximated by the sum of sequence-dependent pairwise contact energies. The condition for the n
Understanding the mechanisms underlying ion channel function from the atomic-scale requires accurate ab initio modelling as well as careful experiments. Here, we present a density functional theory (DFT) study of the ion channel gramicidin A, whose i